Difference between revisions of "Aufgaben:Exercise 1.3: System Comparison at AWGN Channel"

From LNTwww
Line 38: Line 38:
 
K} = 0.001$,   $N_0 = 10^{-10}\;{\rm W}/{\rm Hz}$ und $B_{\rm NF}= 5\; {\rm kHz}$?
 
K} = 0.001$,   $N_0 = 10^{-10}\;{\rm W}/{\rm Hz}$ und $B_{\rm NF}= 5\; {\rm kHz}$?
 
|type="{}"}
 
|type="{}"}
$10 · \lg ρ_v \ = \ $ { 50 3% } $\ \text{dB}$
+
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 50 3% } $\ \text{dB}$
  
{Es wird nun $10 · \lg ρ_v ≥ 60$ dB gefordert. Durch welche Maßnahmen (jeweils für sich allein) ist dies zu erreichen?
+
{Es wird nun $10 · \lg \hspace{0.05cm} ρ_v ≥ 60$ dB gefordert. Durch welche Maßnahmen (jeweils für sich allein) ist dies zu erreichen?
 
|type="[]"}
 
|type="[]"}
 
- Erhöhung der Sendeleistung von $P_{\rm S}= 5$ kW auf $10$ kW.
 
- Erhöhung der Sendeleistung von $P_{\rm S}= 5$ kW auf $10$ kW.
+ Erhöhung des Kanaldämpfungsfaktors von $α_{\rm K} = 0.00$1 auf $0.004$.
+
+ Erhöhung des Kanaldämpfungsfaktors von $α_{\rm K} = 0.001$ auf $0.004$.
 
+ Reduzierung der Rauschleistungsdichte auf $N_0=10^{–11 }$ W/Hz .
 
+ Reduzierung der Rauschleistungsdichte auf $N_0=10^{–11 }$ W/Hz .
- Erhöhung der $NF$–Bandbreite von $B_{\rm NF}= 5$ kHz auf $6$ kHz.
+
- Erhöhung der NF–Bandbreite von $B_{\rm NF}= 5$ kHz auf $6$ kHz.
  
 
{Welcher Störabstand ergibt sich bei '''System B''' mit $10 · \lg ξ = 40$ dB?
 
{Welcher Störabstand ergibt sich bei '''System B''' mit $10 · \lg ξ = 40$ dB?
 
|type="{}"}
 
|type="{}"}
$10 · \lg ρ_v \ = \ $ { 57 3% } $\ \text{dB}$
+
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 57 3% } $\ \text{dB}$
  
 
{Gefordert wird der Störabstand $10 · \lg ρ_v = 50$ dB. Welche Sendeleistung $P_{\rm S}$ genügt bei '''System B''', um diese Qualität zu erzielen?
 
{Gefordert wird der Störabstand $10 · \lg ρ_v = 50$ dB. Welche Sendeleistung $P_{\rm S}$ genügt bei '''System B''', um diese Qualität zu erzielen?
Line 57: Line 57:
 
{Für welchen Wert von $10 · \lg ξ$ ist die Verbesserung von '''System B''' gegenüber '''System A''' am größten?
 
{Für welchen Wert von $10 · \lg ξ$ ist die Verbesserung von '''System B''' gegenüber '''System A''' am größten?
 
|type="{}"}
 
|type="{}"}
$10 · \lg ξ \ = \ ${ 27.9 3% } $\ \text{dB}$
+
$10 · \lg \hspace{0.05cm} ξ \ = \ ${ 27.9 3% } $\ \text{dB}$
  
  
Line 64: Line 64:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''Die normierte Leistungskenngröße ergibt sich mit diesen Werten zu
+
'''(1)'''  Die normierte Leistungskenngröße ergibt sich mit diesen Werten zu
$$\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.$$
+
:$$\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.$$
Damit ergibt sich der Hilfsordinatenwert $y = 5$, was zum Sinken-Störabstand $10 · lg ρ_v = 50$ dB führt.
+
Damit ergibt sich der Hilfsordinatenwert $y = 5$, was zum Sinken-Störabstand $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}$ führt.
  
  
'''2.''' Dies entspricht gegenüber dem bisher betrachteten System einer Erhöhung des Störabstandes um 10 dB, so dass auch $10 · lg ξ$ um 10 dB erhöht werden muss.
+
'''(2)'''&nbsp; Richtig sind also die <u>Alternativen 2 und 3</u>:
$$10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.$$
 
Ein 10–fach größerer $ξ$–Wert wird erreicht – vorausgesetzt die anderen Parameter bleiben jeweils gleich:
 
:*durch die Sendeleistung $P_S = 50 kW$ statt 5 $kW$,
 
:*durch den Dämpfungsfaktor $α_K = 0.00316$ anstelle von $0.001$,
 
:*durch die Rauschleistungsdichte $N_0 = 10°{ –11 } W/Hz$ statt $10^{ –10 } W/Hz$,
 
:*durch die Bandbreite $B_{NF} = 0.5 kHz$ statt $5 kHz$.
 
  
Richtig sind also die Alternativen 2 und 3.
+
Diese Forderung  entspricht gegenüber dem bisher betrachteten System einer Erhöhung des Störabstandes um $10$ dB, so dass auch $10 ·  \lg \hspace{0.05cm}ξ$ um $10$ dB erhöht werden muss:
 +
:$$10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.$$
  
'''3.''' Für $10 · lg ξ = 40$ dB ist die Hilfsgröße $x = 4$. Damit ergibt sich für die Hilfsgröße der Ordinate:
+
Ein $10$–fach größerer $ξ$–Wert wird erreicht – vorausgesetzt die anderen Parameter bleiben jeweils gleich:
$$y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.$$
+
*durch die Sendeleistung $P_{\rm S} = 50$ kW statt $5$ kW,
Dies entspricht dem Sinken–Störabstand $10 · lg ρ_υ = 57$ dB, also einer Verbesserung gegenüber dem System A um 7 dB.
+
*durch den Dämpfungsfaktor $α_{\rm K} = 0.00316$ anstelle von $0.001$,
 +
*durch die Rauschleistungsdichte $N_0 = 10^{ –11 }$ W/Hz statt $10^{ –10 }$ W/Hz,
 +
*durch die Bandbreite $B_{\rm NF} = 0.5$ kHz statt $5$ kHz.
  
'''4.'''Diese Problemstellung wird durch folgende Gleichung beschrieben:
 
$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}$$
 
$$ \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.$$
 
Bei System A war hierfür $10 · lg ξ = 40$ dB notwendig, was bei den weiter gegebenen Zahlenwerten durch $P_S = 5$ kW erreicht wurde. Nun kann die Sendeleistung um etwa 12.1 dB verringert werden:
 
$$ 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.$$
 
Das bedeutet, dass bei System B mit nur 6% der Sendeleistung von System A – also mit nur 0.3 kW – die gleiche Systemqualität erzielt wird.
 
  
 +
'''(3)'''&nbsp; Für $10 · \lg \hspace{0.05cm} ξ = 40$ dB ist die Hilfsgröße $x = 4$. Damit ergibt sich für die Hilfsgröße der Ordinate:
 +
:$$y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.$$
 +
Dies entspricht dem Sinken–Störabstand $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB}$, also einer Verbesserung gegenüber dem '''System A''' um $7$ dB.
  
'''5.'''Wir bezeichnen mit ''V'' (steht für Verbesserung) den größeren Sinken–Störabstand von System B gegenüber System A:
+
 
$$V  =  10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)}$$
+
'''(4)'''&nbsp; Diese Problemstellung wird durch folgende Gleichung beschrieben:
$$ =  \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.$$
+
:$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm}
Durch Nullsetzen der Ableitung ergibt sich derjenige x–Wert, der zur maximalen Verbesserung führt:
+
\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.$$
$$ \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.$$
+
Bei '''System A''' war hierfür $10 · \lg \hspace{0.05cm} \xi = 40$ dB notwendig, was bei den weiter gegebenen Zahlenwerten durch $P_{\rm S} = 5$ kW erreicht wurde. Nun kann die Sendeleistung um etwa $12.1$ dB verringert werden:
Es ergibt sich also genau der in (d) behandelte Fall mit $10 · lg ρ_υ = 50$ dB, während der Störabstand bei System A nur 37.9 dB beträgt. Die Verbesserung ist demnach 12.1 dB.
+
:$$ 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.$$
 +
Das bedeutet: Bei '''System B''' wird mit nur 6% der Sendeleistung von '''System A''' – also mit nur $P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}$ – die gleiche Systemqualität erzielt.
 +
 
 +
 
 +
'''(5)'''&nbsp; Wir bezeichnen mit ''V'' (steht für Verbesserung) den größeren Sinken–Störabstand von '''System B''' gegenüber '''System A''':
 +
:$$V  =  10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)}
 +
=  \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.$$
 +
Durch Nullsetzen der Ableitung ergibt sich derjenige $x$–Wert, der zur maximalen Verbesserung führt:
 +
:$$ \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.$$
 +
Es ergibt sich also genau der in der Teilaufgabe (4) behandelte Fall mit $10 · \lg ρ_υ = 50$ dB, während der Störabstand bei '''System A''' nur $37.9$ dB beträgt. Die Verbesserung ist demnach $12.1$ dB.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 09:42, 20 June 2017

Zum Systemvergleich beim AWGN–Kanal

Für den Vergleich verschiedener Modulationsverfahren und Demodulatoren hinsichtlich der Rauschempfindlichkeit gehen wir meist vom so genanntenAWGN–Kanal aus und beschreiben folgendes doppelt–logarithmische Diagramm:

  • Die Ordinate gibt den Sinken–Störabstand (SNR logarithmiert) $10 · \lg ρ_v$ in dB an.
  • Auf der Abszisse ist $10 · \lg ξ$ aufgetragen, wobei für die normierte Leistungskenngröße gilt:
$$ \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.$$
  • In $ξ$ sind also die Sendeleistung $P_{\rm S}$, der Kanaldämpfungsfaktor $α_{\rm K}$, die Rauschleistungsdichte $N_0$ sowie die Bandbreite $B_{\rm NF}$ des Nachrichtensignals in geeigneter Weise zusammengefasst.
  • Wenn nicht ausdrücklich etwas anderes angegeben ist, soll in der Aufgabe von folgenden Werten ausgegangen werden:
$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} = 10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm} B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$

In der Grafik sind zwei Systeme eingezeichnet, deren (x, y)–Verlauf wie folgt beschrieben werden kann:

  • Das System A ist gekennzeichnet durch die folgende Gleichung:
$$y = x+1.$$
  • Entsprechend gilt für das System B:
$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.$$

Die in der Grafik zusätzlich grün eingezeichneten Achsenbeschriftungen haben folgende Bedeutung:

$$ x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.$$

So steht $x = 4$ für $10 · \lg ξ = 40$ dB bzw. $ξ = 10^4$ und $y = 5$ steht für $10 · \lg ρ_v= 50$ dB, also $ρ_v = 10^5$.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Qualitätskriterien.
  • Bezug genommen wird insbesondere auf die Seite Untersuchungen beim AWGN-Kanal.
  • Durch die Angabe der Leistungen in $\rm W$att sind diese unabhängig vom Bezugswiderstand $R$.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Welcher Sinken–Störabstand (in dB) ergibt sich bei System A mit $P_{\rm S}= 5 \;{\rm kW}$,   $\alpha_{\rm K} = 0.001$,   $N_0 = 10^{-10}\;{\rm W}/{\rm Hz}$ und $B_{\rm NF}= 5\; {\rm kHz}$?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

2

Es wird nun $10 · \lg \hspace{0.05cm} ρ_v ≥ 60$ dB gefordert. Durch welche Maßnahmen (jeweils für sich allein) ist dies zu erreichen?

Erhöhung der Sendeleistung von $P_{\rm S}= 5$ kW auf $10$ kW.
Erhöhung des Kanaldämpfungsfaktors von $α_{\rm K} = 0.001$ auf $0.004$.
Reduzierung der Rauschleistungsdichte auf $N_0=10^{–11 }$ W/Hz .
Erhöhung der NF–Bandbreite von $B_{\rm NF}= 5$ kHz auf $6$ kHz.

3

Welcher Störabstand ergibt sich bei System B mit $10 · \lg ξ = 40$ dB?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

4

Gefordert wird der Störabstand $10 · \lg ρ_v = 50$ dB. Welche Sendeleistung $P_{\rm S}$ genügt bei System B, um diese Qualität zu erzielen?

$P_{\rm S} \ = \ $

$\ \text{ kW }$

5

Für welchen Wert von $10 · \lg ξ$ ist die Verbesserung von System B gegenüber System A am größten?

$10 · \lg \hspace{0.05cm} ξ \ = \ $

$\ \text{dB}$


Musterlösung

(1)  Die normierte Leistungskenngröße ergibt sich mit diesen Werten zu

$$\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.$$

Damit ergibt sich der Hilfsordinatenwert $y = 5$, was zum Sinken-Störabstand $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}$ führt.


(2)  Richtig sind also die Alternativen 2 und 3:

Diese Forderung entspricht gegenüber dem bisher betrachteten System einer Erhöhung des Störabstandes um $10$ dB, so dass auch $10 · \lg \hspace{0.05cm}ξ$ um $10$ dB erhöht werden muss:

$$10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.$$

Ein $10$–fach größerer $ξ$–Wert wird erreicht – vorausgesetzt die anderen Parameter bleiben jeweils gleich:

  • durch die Sendeleistung $P_{\rm S} = 50$ kW statt $5$ kW,
  • durch den Dämpfungsfaktor $α_{\rm K} = 0.00316$ anstelle von $0.001$,
  • durch die Rauschleistungsdichte $N_0 = 10^{ –11 }$ W/Hz statt $10^{ –10 }$ W/Hz,
  • durch die Bandbreite $B_{\rm NF} = 0.5$ kHz statt $5$ kHz.


(3)  Für $10 · \lg \hspace{0.05cm} ξ = 40$ dB ist die Hilfsgröße $x = 4$. Damit ergibt sich für die Hilfsgröße der Ordinate:

$$y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.$$

Dies entspricht dem Sinken–Störabstand $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB}$, also einer Verbesserung gegenüber dem System A um $7$ dB.


(4)  Diese Problemstellung wird durch folgende Gleichung beschrieben:

$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.$$

Bei System A war hierfür $10 · \lg \hspace{0.05cm} \xi = 40$ dB notwendig, was bei den weiter gegebenen Zahlenwerten durch $P_{\rm S} = 5$ kW erreicht wurde. Nun kann die Sendeleistung um etwa $12.1$ dB verringert werden:

$$ 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.$$

Das bedeutet: Bei System B wird mit nur 6% der Sendeleistung von System A – also mit nur $P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}$ – die gleiche Systemqualität erzielt.


(5)  Wir bezeichnen mit V (steht für Verbesserung) den größeren Sinken–Störabstand von System B gegenüber System A:

$$V = 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)} = \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.$$

Durch Nullsetzen der Ableitung ergibt sich derjenige $x$–Wert, der zur maximalen Verbesserung führt:

$$ \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.$$

Es ergibt sich also genau der in der Teilaufgabe (4) behandelte Fall mit $10 · \lg ρ_υ = 50$ dB, während der Störabstand bei System A nur $37.9$ dB beträgt. Die Verbesserung ist demnach $12.1$ dB.