Difference between revisions of "Aufgaben:Exercise 3.10Z: Amplitude and Angle Modulation in Comparison"
m (Guenter verschob die Seite 3.10Z Systemvergleich AM–WM nach 3.10Z Amplituden- und Winkelmodulation im Vergleich) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1112__Mod_Z_3_9.png|right|]] | + | [[File:P_ID1112__Mod_Z_3_9.png|right|frame|Kennlinien zur Beschreibung des Rauschverhaltens bei AM und WM]] |
− | Betrachtet wird die Übertragung eines Cosinussignals mit Amplitudenmodulation und Winkelmodulation. Es gelten folgende Randbedingungen: | + | Betrachtet wird die Übertragung eines Cosinussignals mit Amplitudenmodulation (AM) und Winkelmodulation (WM). Es gelten folgende Randbedingungen: |
− | + | * Nachrichtenfrequenz $f_{\rm N} = 10 \ \rm kHz$, | |
− | + | * Sendeleistung $P_{\rm S} = 100 \ \rm kW$, | |
− | + | * Kanaldämpfungsfaktor $20 · \lg α_{\rm K} = -120 \ \rm dB$, | |
− | + | * Rauschleistungsdichte $N_0 = 10^{–16} \ \rm W/Hz$. | |
Diese Systemparameter werden zweckmäßigerweise zur gemeinsamen Leistungskenngröße | Diese Systemparameter werden zweckmäßigerweise zur gemeinsamen Leistungskenngröße | ||
− | $$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$ | + | :$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$ |
− | zusammengefasst. Die Grafik zeigt den sich ergebenden Sinken–Störabstand $10 · lg | + | zusammengefasst. Die Grafik zeigt den sich ergebenden Sinken–Störabstand $10 · \lg ρ_v$ in Abhängigkeit der logarithmierten Leistungskenngröße $ξ$. |
− | '' | + | |
− | $$\rho_{v } = \left\{ \begin{array}{c} \xi \\ {\eta^2}/2 \cdot\xi \\ 3{\eta^2}/2 \cdot\xi \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}l} {\rm ZSB/ESB-AM \hspace{0.15cm}ohne \hspace{0.15cm}Tr\ddot{a}ger} \hspace{0.05cm}, \\ {\rm PM \hspace{0.15cm}mit \hspace{0.15cm}Modulationsgrad \hspace{0.15cm} \eta } \hspace{0.05cm}, \\ {\rm FM \hspace{0.15cm}mit \hspace{0.15cm}Modulationsgrad \hspace{0.15cm} \eta }\hspace{0.05cm}. \\ \end{array}$$ | + | ''Hinweise:'' |
− | Die Bandbreiten bei Winkelmodulation sind so zu wählen, dass ein Klirrfaktor K | + | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation|Rauscheinfluss bei Winkelmodulation]]. |
− | $$ B_{\rm K} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.05cm}.$$ | + | *Bezug genommen wird aber auch auf den Abschnitt [[Modulationsverfahren/Synchrondemodulation#Sinken-SNR_und_Leistungskenngr.C3.B6.C3.9Fe|Sinken-SNR und Leistungskenngröße]] sowie auf das Kapitel [[Modulationsverfahren/Frequenzmodulation_(FM)|Frequenzmodulation]]. |
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | *Es gelten folgende Beziehungen: | ||
+ | :$$\rho_{v } = \left\{ \begin{array}{c} \xi \\ {\eta^2}/2 \cdot\xi \\ 3{\eta^2}/2 \cdot\xi \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}l} {\rm ZSB/ESB-AM \hspace{0.15cm}ohne \hspace{0.15cm}Tr\ddot{a}ger} \hspace{0.05cm}, \\ {\rm PM \hspace{0.15cm}mit \hspace{0.15cm}Modulationsgrad \hspace{0.15cm} \eta } \hspace{0.05cm}, \\ {\rm FM \hspace{0.15cm}mit \hspace{0.15cm}Modulationsgrad \hspace{0.15cm} \eta }\hspace{0.05cm}. \\ \end{array}$$ | ||
+ | *Die Bandbreiten $B_{\rm K}$ bei Winkelmodulation sind gemäß der ''Carson–Regel'' so zu wählen, dass ein Klirrfaktor $K < 1\%$ garantiert werden kann: | ||
+ | :$$ B_{\rm K} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.05cm}.$$ | ||
Line 25: | Line 30: | ||
{Berechnen Sie die logarithmierte Leistungskenngröße $ξ$. | {Berechnen Sie die logarithmierte Leistungskenngröße $ξ$. | ||
|type="{}"} | |type="{}"} | ||
− | $10 · lg ξ$ | + | $10 · \lg \ ξ \ = \ $ { 50 3% } $\ \rm dB$ |
{Welcher Sinkenstörabstand ergibt sich beim AM–System? | {Welcher Sinkenstörabstand ergibt sich beim AM–System? | ||
|type="{}"} | |type="{}"} | ||
− | $10 · lg | + | $10 · \lg ρ_v \ = \ $ { 50 3% } $\ \rm dB$ |
{Welche spezielle Form der AM könnte hier vorliegen? | {Welche spezielle Form der AM könnte hier vorliegen? | ||
|type="[]"} | |type="[]"} | ||
− | + ZSB–AM. | + | + Es könnte eine ZSB–AM sein. |
− | + ESB–AM. | + | + Es könnte eine ESB–AM sein. |
− | + AM ohne Träger. | + | + Es könnte eine AM ohne Träger sein. |
− | - AM mit zugesetztem Träger. | + | - Es könnte eine AM mit zugesetztem Träger sein. |
− | {Wie groß ist im Fall der ZSB–AM die erforderliche Kanalbandbreite? | + | {Wie groß ist im Fall der ZSB–AM die erforderliche Kanalbandbreite $B_{\rm K}$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $B_{\rm K} \ = \ $ { 20 3% } $\ \rm kHz$ |
{Wie groß ist der Sinkenstörabstand beim WM-System? | {Wie groß ist der Sinkenstörabstand beim WM-System? | ||
|type="{}"} | |type="{}"} | ||
− | $10 · lg | + | $10 · \lg ρ_v \ = \ $ { 60 3% } $\ \rm dB$ |
− | {Welche Bandbreite ist beim vorgegebenen PM–System mindestens erforderlich, wenn K < 1% gelten soll? | + | {Welche Bandbreite ist beim vorgegebenen PM–System mindestens erforderlich, wenn $K < 1\%$ gelten soll? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $B_{\rm K} \ = \ $ { 130 3% } $\ \rm kHz$ |
− | {Wie groß ist für K < 1% die erforderliche Bandbreite, wenn das WM–System eine Frequenzmodulation realisiert? | + | {Wie groß ist für $K < 1\%$ die erforderliche Bandbreite, wenn das WM–System eine Frequenzmodulation realisiert? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $B_{\rm K} \ = \ $ { 91.6 3% } $\ \rm kHz$ |
− | {Wie groß muss bei sonst gleichen Parametern die Sendeleistung mindestens sein, damit das WM–System nicht schlechter als das AM–System ist? | + | {Wie groß muss bei sonst gleichen Parametern die Sendeleistung P_{\rm S}$ mindestens sein, damit das WM–System nicht schlechter als das AM–System ist? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $P_{\rm S} \ = \ $ { 0.03 3% } $\ \rm kW$ |
</quiz> | </quiz> | ||
Revision as of 12:32, 17 July 2017
Betrachtet wird die Übertragung eines Cosinussignals mit Amplitudenmodulation (AM) und Winkelmodulation (WM). Es gelten folgende Randbedingungen:
- Nachrichtenfrequenz $f_{\rm N} = 10 \ \rm kHz$,
- Sendeleistung $P_{\rm S} = 100 \ \rm kW$,
- Kanaldämpfungsfaktor $20 · \lg α_{\rm K} = -120 \ \rm dB$,
- Rauschleistungsdichte $N_0 = 10^{–16} \ \rm W/Hz$.
Diese Systemparameter werden zweckmäßigerweise zur gemeinsamen Leistungskenngröße
- $$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$
zusammengefasst. Die Grafik zeigt den sich ergebenden Sinken–Störabstand $10 · \lg ρ_v$ in Abhängigkeit der logarithmierten Leistungskenngröße $ξ$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Rauscheinfluss bei Winkelmodulation.
- Bezug genommen wird aber auch auf den Abschnitt Sinken-SNR und Leistungskenngröße sowie auf das Kapitel Frequenzmodulation.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Es gelten folgende Beziehungen:
- $$\rho_{v } = \left\{ \begin{array}{c} \xi \\ {\eta^2}/2 \cdot\xi \\ 3{\eta^2}/2 \cdot\xi \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}l} {\rm ZSB/ESB-AM \hspace{0.15cm}ohne \hspace{0.15cm}Tr\ddot{a}ger} \hspace{0.05cm}, \\ {\rm PM \hspace{0.15cm}mit \hspace{0.15cm}Modulationsgrad \hspace{0.15cm} \eta } \hspace{0.05cm}, \\ {\rm FM \hspace{0.15cm}mit \hspace{0.15cm}Modulationsgrad \hspace{0.15cm} \eta }\hspace{0.05cm}. \\ \end{array}$$
- Die Bandbreiten $B_{\rm K}$ bei Winkelmodulation sind gemäß der Carson–Regel so zu wählen, dass ein Klirrfaktor $K < 1\%$ garantiert werden kann:
- $$ B_{\rm K} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.05cm}.$$
Fragebogen
Musterlösung
2. Aus der Grafik ist zu entnehmen, dass beim AM–System $ρ_υ = ξ$ gilt. Damit ist auch $$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
3. Es handelt sich um eine ZSB–AM oder ESB–AM ohne Träger, das heißt, richtig sind die ersten drei Lösungsvorschläge. Dagegen scheiden die ZSB–AM und die ESB–AM mit Träger aus. In diesen Fällen würde $ρ_υ$ stets kleiner als $ξ$ sein.
4.Bei der ZSB–AM muss $B_K ≥ 2 · f_N = 20 kHz$ gelten.
5. Aus der Grafik erkennt man, dass ab etwa $20 dB$ gilt:
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 10 \cdot {\rm lg} \hspace{0.15cm}\xi + 10\,{\rm dB}. \hspace{0.3cm}{\rm Mit}\hspace{0.15cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi = 50\,{\rm dB}\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 60\,{\rm dB}}.$$
6. Bei Phasenmodulation gilt: $$ \rho_{v }= \frac{\eta^2}{2} \cdot \xi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta^2 = \frac{2 \cdot \rho_{v }}{\xi} = 20\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 4.47 \hspace{0.05cm}.$$ Damit muss für die Kanalbandbreite unter der Voraussetzung K < 1% gelten: $$B_{\rm K} \ge 2 \cdot f_{\rm N} \cdot (\eta +2) = 20\,{\rm kHz}\cdot 6.47 \hspace{0.15cm}\underline { \approx 130\,{\rm kHz}}\hspace{0.05cm}.$$
7.Hier genügt ein kleinerer Modulationsindex und damit auch eine kleinere Bandbreite: $${3}/{2}\cdot \eta^2 = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 2.58 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}B_{\rm K} = 20\,{\rm kHz}\cdot 4.58 \hspace{0.15cm}\underline {\approx 91.6\,{\rm kHz}}\hspace{0.05cm}.$$ 8. In der Grafik erkennt man den so genannten FM–Knick. Für $10 · lg ξ = 15 dB$ erhält man für das WM–System genau das gleiche Sinken–SNR wie für das AM–System. Die Sendeleistung kann also um $35 dB$ kleiner sein als $100 kW$: $$ 10 \cdot {\rm lg} \hspace{0.15cm}\frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}= -35\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}\approx 0.0003\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm S,\hspace{0.05cm}min} \hspace{0.15cm}\underline {\approx 0.03\,{\rm kW}}\hspace{0.05cm}.$$