Difference between revisions of "Aufgaben:Exercise 5.10: DMT Process for DSL"
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulationsverfahren/Weitere_OFDM–Anwendungen |
}} | }} | ||
Line 22: | Line 22: | ||
*Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Weitere_OFDM–Anwendungen|Weitere OFDM–Anwendungen]]. | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Weitere_OFDM–Anwendungen|Weitere OFDM–Anwendungen]]. | ||
*Bezug genommen wird insbesondere auf die Seiten [[Modulationsverfahren/Weitere_OFDM–Anwendungen#Eine_Kurzbeschreibung_von_DSL_.E2.80.93_Digital_Subscriber_Line|Eine Kurzbeschreibung von DSL]] sowie [[Modulationsverfahren/Weitere_OFDM–Anwendungen#Unterschiede_zwischen_DMT_und_dem_beschriebenen_OFDM|Unterschiede zwischen DMT und dem beschriebenen OFDM]]. | *Bezug genommen wird insbesondere auf die Seiten [[Modulationsverfahren/Weitere_OFDM–Anwendungen#Eine_Kurzbeschreibung_von_DSL_.E2.80.93_Digital_Subscriber_Line|Eine Kurzbeschreibung von DSL]] sowie [[Modulationsverfahren/Weitere_OFDM–Anwendungen#Unterschiede_zwischen_DMT_und_dem_beschriebenen_OFDM|Unterschiede zwischen DMT und dem beschriebenen OFDM]]. | ||
− | * Weitere Informationen zum Thema finden Sie im zweiten Kapitel des LNTwww–Buchs [[Beispiele_von_Nachrichtensystemen]]. | + | * Weitere Informationen zum Thema finden Sie im zweiten Kapitel: DSL – Digital Subscriber Line des LNTwww–Buchs [[Beispiele_von_Nachrichtensystemen]]. |
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
Line 44: | Line 44: | ||
{Wie viele Bins stehen für den Upstream und den Downstream zur Verfügung? | {Wie viele Bins stehen für den Upstream und den Downstream zur Verfügung? | ||
|type="{}"} | |type="{}"} | ||
− | $N_{Up}$ | + | $N_{\rm Up} \ = \ $ { 32 } |
− | $N_{Down}$ | + | $N_{\rm Down} \ = \ $ { 192 } |
− | {Geben Sie die Dauer T des Kernsymbols an: | + | {Geben Sie die Dauer $T$ des Kernsymbols an: |
|type="{}"} | |type="{}"} | ||
− | $T$ | + | $T \ = \ $ { 232 3% } $\ \rm μs$ |
− | {Wie groß ist die Dauer $ | + | {Wie groß ist die Dauer $T_{\rm G}$ des Guard–Intervalls? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $T_{\rm G} \ = \ $ { 14 3% } $\ \rm μs$ |
− | {Welcher Wert ergibt sich somit für die Rahmendauer $ | + | {Welcher Wert ergibt sich somit für die Rahmendauer $T_{\rm R}$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $T_{\rm R} \ = \ $ { 246 3% } $\ \rm μs$ |
{Geben Sie die Nutzbitrate des gezeigten Systems für den Downstream an, wenn für alle Träger BPSK verwendet wird: | {Geben Sie die Nutzbitrate des gezeigten Systems für den Downstream an, wenn für alle Träger BPSK verwendet wird: | ||
|type="{}"} | |type="{}"} | ||
− | $R_{B,Down}$ | + | $R_\text {B, Down} \ = \ $ { 768 3% } $\ \rm kbit/s$ |
− | {Die 198–te Stützstelle des (finiten) DMT–Spektrums sei mit 1 + 3 · j belegt. Bestimmen Sie den Wert der 314–ten Stützstelle: | + | {Die 198–te Stützstelle des (finiten) DMT–Spektrums sei mit $1 + 3 · {\rm j}$ belegt. Bestimmen Sie den Wert der 314–ten Stützstelle: |
|type="{}"} | |type="{}"} | ||
− | $\text{Re | + | $\text{Re}(314 · f_0) \ = \ $ { 1 3% } |
− | $\text{Im | + | $\text{Im}(314 · f_0) \ = \ $ { -3.09--2.91 } |
</quiz> | </quiz> | ||
Revision as of 13:02, 15 August 2017
Wir betrachten in dieser Aufgabe ein DSL–System (Digital Subscriber Line), das zur Modulation
- DMT (Discrete Multitone Transmission)
- mit $N = 512$ Stützstellen
verwendet wird. In diesem Zusammenhang werden die Träger auch als „Bins” bezeichnet. Für DSL ist festgelegt:
- Der Trägerabstand sei $f_0 = 4.3125\ \rm kHz$.
- Das Signal ist gleichanteilsfrei: $S(f = 0) = 0$.
- Der sogenannte Nyquist–Tone wird ebenfalls zu Null gesetzt: $S(256 · f_0) = 0$.
Die Grafik zeigt die Bandbreitenorganisation des betrachteten Systems für positive Frequenzen:
- Ein Übertragungsrahmen der DMT setzt sich wie bei OFDM aus der Kernsymboldauer $T$ und der Dauer $T_{\rm G}$ des zyklischen Präfixes zusammen. Dieses bestehe aus $N_{\rm G} = 32$ Abtastwerten.
- Zur Synchronisation zwischen Sender und Empfänger wird nach jeweils 68 Rahmen ein Synchronisationsrahmen gesendet, der keine Nutzdaten enthält.
Hinweise:
- Die Aufgabe gehört zum Kapitel Weitere OFDM–Anwendungen.
- Bezug genommen wird insbesondere auf die Seiten Eine Kurzbeschreibung von DSL sowie Unterschiede zwischen DMT und dem beschriebenen OFDM.
- Weitere Informationen zum Thema finden Sie im zweiten Kapitel: DSL – Digital Subscriber Line des LNTwww–Buchs Beispiele von Nachrichtensystemen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
2. Das Zeitsignal ist rein reell, da der Realteil des Spektrums gerade und der Imaginärteil ungerade ist ⇒ Antwort 1. Diese Eigenschaft geht bei Systemen, die in das äquivalente Basisband transformiert werden müssen, durch das Abschneiden der negativen Frequenzen verloren. Das Zeitsignal wird dadurch komplex.
3. Die entsprechenden Bandbreiten für die Rechnung sind aus der Grafik ablesbar: $$N_{{\rm{Up}}} = \frac{{276\,\,{\rm kHz}} -{138\,\,{\rm kHz}}} {{4.3125\,\,{\rm kHz}}}\hspace{0.15cm}\underline {= 32},$$ $$N_{{\rm{Down}}} = \frac{{1104\,\,{\rm kHz}} -{276\,\,{\rm kHz}}} {{4.3125\,\,{\rm kHz}}}\hspace{0.15cm}\underline {= 192}.$$
4. Die Kernsymboldauer ist der Kehrwert der Grundfrequenz: $$T = \frac{1} {f_0}= \frac{1} {{4.3125\,\,{\rm kHz}}} \hspace{0.15cm}\underline {\approx 232 \,\,{\rm \mu s}}.$$
5. Daraus ergibt sich für die Dauer des Guard–Intervalls: $$T_{\rm G} = \frac{N_{\rm G}} {N} \cdot T = \frac{32} {512} \cdot 232 \,\,{\rm \mu s} \hspace{0.15cm}\underline {\approx 14 \,\,{\rm \mu s}}.$$
6. Ein Rahmen setzt sich aus Kernsymbol und zyklischem Präfix zusammen. $T_R = T + T_G ≈ 246 μs$.
7. Mit den Parametern $N_{Down} = 192$, $T_R ≈ 246 μs$ und M = 2 erhält man: $$R_{\rm B,\, Down} = \frac{192 \cdot {{\rm{log}_2}(2)}}{246 \,\,{\rm \mu s}} \cdot \frac {68}{69}\hspace{0.15cm}\underline {\approx 768 \,\,{\rm kbit/s}}.$$ Hierbei ist berücksichtigt, dass ein jeder 69. Rahmen nur der Synchronisation dient.
8. Für das DMT–Spektrum gilt allgemein: $$S((N - \mu ) \cdot f_0 ) = S^*(\mu \cdot f_0).$$ Mit N = 512 und $S(198 · f_0) = 1 + 3 · j$ gilt somit: $$S(314 \cdot f_0) \hspace{0.15cm}\underline {= 1 - 3 \cdot {\rm j}}.$$