Difference between revisions of "Applets:Periodendauer periodischer Signale"

From LNTwww
m
Line 7: Line 7:
 
<html>
 
<html>
 
<head>
 
<head>
   <script type="text/javascript"
+
   <script type="text/javascript" src="http://cdnjs.cloudflare.com/ajax/libs/jsxgraph/0.99.6/jsxgraphcore.js"></script>
  src="https://cdnjs.cloudflare.com/ajax/libs/jsxgraph/0.99.6/jsxgraphcore.js"></script>
+
  <script type="text/javascript" src="https://cdn.rawgit.com/mathjax/MathJax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 
   <style>
 
   <style>
 
   .button1{
 
   .button1{
Line 24: Line 24:
 
     top: 105px;
 
     top: 105px;
 
     left: 530px;
 
     left: 530px;
}
+
  }
 +
 
 
   .button1:active {
 
   .button1:active {
 
     background-color: #939393;}
 
     background-color: #939393;}
  
     .hinweis1 {
+
     .formel {
 
         background-color: #f5f5f5;
 
         background-color: #f5f5f5;
 
         border-radius: 4px ;
 
         border-radius: 4px ;
         padding: 20px 60px;
+
         padding: 20px 40px;
 +
        font-family: arial;
 +
        position:absolute;
 +
        top: 150px;
 +
        left: 10px;
 +
    }
 +
    .text5 {
 
         font-family: arial;
 
         font-family: arial;
 +
        color:blue;
 +
        font-size:0.75em;
 
         position:absolute;
 
         position:absolute;
         top: 159px;
+
         top: 860px;
 +
        left: 480px;
 +
    }
 +
 
 +
    .text2 {
 +
        font-family: arial;
 +
        font-size:0.75em;
 +
        position:absolute;
 +
        top: 860px;
 
         left: 100px;
 
         left: 100px;
 +
    }
 +
 +
    .text3 {
 +
        font-family: arial;
 +
        font-size:0.75em;
 +
        position:absolute;
 +
        top: 860px;
 +
        left: 220px;
 +
    }
 +
 +
    .text4 {
 +
        font-family: arial;
 +
        font-size:0.75em;
 +
        position:absolute;
 +
        top: 860px;
 +
        left: 360px;
 +
    }
 +
    .text1 {
 +
 +
        font-family: arial;
 +
        font-size:0.75em;
 +
        position:absolute;
 +
        top: 860px;
 +
        left: 20px;
 
     }
 
     }
  
Line 44: Line 85:
 
<form id="myForm">
 
<form id="myForm">
  
 
+
<!-- Resetbutton, Checkbox und Formel -->
<h2 class="text" style="color:#939393; font-weight:bold; top:-10px; left:90px; font-family:arial; font-size:1.5em;position:absolute;">Periodendauer <I>T</I><sub>0</sub> periodischer Signale</h2>
 
 
 
 
<button class="button1" style="font-size:0.750em" onclick="zurueck()">Reset</button>
 
<button class="button1" style="font-size:0.750em" onclick="zurueck()">Reset</button>
 
<p><span class="separate" style="position:absolute; top:123px; left:454px; font-family:arial; font-size:0.750em;">mit Gitter<input name="gridbox" id="gridbox" type="checkbox" onclick="showgrid();" checked="checked"></span></p>
 
<p><span class="separate" style="position:absolute; top:123px; left:454px; font-family:arial; font-size:0.750em;">mit Gitter<input name="gridbox" id="gridbox" type="checkbox" onclick="showgrid();" checked="checked"></span></p>
<box class="hinweis1"> </box>
+
<box class="formel">\(x(t)=A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)\)</box>
 +
<!-- Festlegen der Ausgabefelder -->
 +
<div class="text1">
 +
    <span><I>x(t)</I>=<span id="x(t)"></span></span>
 +
</div>
 +
<div class="text2">
 +
    <span><I>x(t+T</I><sub>0</sub><I>)</I>=<span id="x(t+T_0)"></span></span>
 +
</div>
 +
<div class="text3">
 +
    <span><I>x(t+2T</I><sub>0</sub><I>)</I>=<span id="x(t+2T_0)"> </span></span>
 +
</div>
 +
<div class="text4">
 +
    <span><I>x</I><sub>max</sub>=<span id="x_max"></span></span>
 +
</div>
 +
<div class="text5">
 +
    <span><I>T</I><sub>0</sub>=<span id="T_0"></span></span>
 +
</div>
 
<div id="box2" class="jxgbox" style="width:500px; height:100px; float:top; margin:-10px 20px 100px 0px;"></div>
 
<div id="box2" class="jxgbox" style="width:500px; height:100px; float:top; margin:-10px 20px 100px 0px;"></div>
 
<div id="box1" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:-10px 20px 100px 0px;"></div>
 
<div id="box1" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:-10px 20px 100px 0px;"></div>
Line 56: Line 111:
 
<script type="text/javascript">
 
<script type="text/javascript">
  
 +
//Grundeinstellungen der beiden Applets
 
var brd2 = JXG.JSXGraph.initBoard('box2', {showCopyright:false, showNavigation:false, axis:false, grid:false, zoom:{enabled:false}, pan:{enabled:false}, boundingbox: [-1, 2.2, 12.4, -2.2]});
 
var brd2 = JXG.JSXGraph.initBoard('box2', {showCopyright:false, showNavigation:false, axis:false, grid:false, zoom:{enabled:false}, pan:{enabled:false}, boundingbox: [-1, 2.2, 12.4, -2.2]});
var brd1 = JXG.JSXGraph.initBoard('box1', {showCopyright:false, axis:false, grid:false, boundingbox: [-0.9, 2.2, 12.4, -2.2]});
+
var brd1 = JXG.JSXGraph.initBoard('box1', {showCopyright:false, axis:false, zoom:{factorX:1.1, factorY:1.1, wheel:true, needshift:true, eps: 0.1}, grid:false, boundingbox: [-0.5, 2.2, 12.4, -2.2]});
 
brd2.addChild(brd1);
 
brd2.addChild(brd1);
  
xaxis = brd1.create('axis', [[0, 0], [1,0]], {name:'<I>t</I>/ms', withLabel:true, label:{position:'rt', offset:[-25, 15]}});
+
//Einstellungen der Achsen
yaxis = brd1.create('axis', [[0, 0], [0, 1]], {name:'<I>x(t)</I>/V', withLabel:true, label:{position:'rt', offset:[10, -5]}});
+
xaxis = brd1.create('axis', [[0, 0], [1,0]], {name:'<I>t</I>/<I>T</I>', withLabel:true, label:{position:'rt', offset:[-25, 15]}});
 +
yaxis = brd1.create('axis', [[0, 0], [0, 1]], {name:'<I>x(t)</I>', withLabel:true, label:{position:'rt', offset:[10, -5]}});
  
 +
//Festlegen der Schieberegler
 
a = brd2.create('slider',[[-0.7,1.5],[3,1.5],[0,0.5,1]], {suffixlabel:' <I>A</I>_1=', unitLabel: 'V', snapWidth:0.01}),
 
a = brd2.create('slider',[[-0.7,1.5],[3,1.5],[0,0.5,1]], {suffixlabel:' <I>A</I>_1=', unitLabel: 'V', snapWidth:0.01}),
 
b = brd2.create('slider',[[-0.7,0.5],[3,0.5],[0,1,10]], {suffixlabel:'<I>f</I>_1=', unitLabel: 'kHz', snapWidth:0.1}),
 
b = brd2.create('slider',[[-0.7,0.5],[3,0.5],[0,1,10]], {suffixlabel:'<I>f</I>_1=', unitLabel: 'kHz', snapWidth:0.1}),
c = brd2.create('slider',[[-0.7,-0.5],[3,-0.5],[-180,0,180]], {suffixlabel:'<I>&phi;</I>_1=', unitLabel: 'Grad', snapWidth:1}),
+
c = brd2.create('slider',[[-0.7,-0.5],[3,-0.5],[-180,0,180]], {suffixlabel:'<I>&straightphi;</I>_1=', unitLabel: 'Grad', snapWidth:5}),
 
d = brd2.create('slider',[[6,1.5],[9.7,1.5],[0,0.5,1]], {suffixlabel:'<I>A</I>_2=', unitLabel: 'V', snapWidth:0.01}),
 
d = brd2.create('slider',[[6,1.5],[9.7,1.5],[0,0.5,1]], {suffixlabel:'<I>A</I>_2=', unitLabel: 'V', snapWidth:0.01}),
 
e = brd2.create('slider',[[6,0.5],[9.7,0.5],[0,2,10]], {suffixlabel:'<I>f</I>_2=', unitLabel: 'kHz', snapWidth:0.1}),
 
e = brd2.create('slider',[[6,0.5],[9.7,0.5],[0,2,10]], {suffixlabel:'<I>f</I>_2=', unitLabel: 'kHz', snapWidth:0.1}),
g = brd2.create('slider',[[6,-0.5],[9.7,-0.5],[-179,90,180]], {suffixlabel:'<I>&phi;</I>_2=',unitLabel: 'Grad', snapWidth:5}),
+
g = brd2.create('slider',[[6,-0.5],[9.7,-0.5],[-180,90,180]], {suffixlabel:'<I>&straightphi;</I>_2=',unitLabel: 'Grad', snapWidth:5}),
t = brd2.create('slider',[[-0.7,-1.5],[3,-1.5],[0,0,10]], {suffixlabel:'<I>t</I>=', unitLabel: 'ms',snapWidth:0.01}),
+
t = brd2.create('slider',[[-0.7,-1.5],[3,-1.5],[0,0,10]], {suffixlabel:'<I>t</I>=', snapWidth:0.2}),
 +
 
 +
//Definition der Funktion
 +
signaldarstellung = brd1.create('functiongraph',[function(x){
 +
        return (a.Value()*Math.cos(2*Math.PI*b.Value()*x-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*x-2*Math.PI*g.Value()/360))
 +
    }], {strokeColor: "red"});
 +
 
 +
//Definition des Punktes p_T0, des Hilfspunktes p_T0h und der Geraden l_T0 für Periodendauer T_0
 +
p_T0=brd1.create('point', [function(){ return Math.round(getT0() *100)/100;},
 +
      function(){ return a.Value()*Math.cos(2*Math.PI*b.Value()*(Math.round(getT0() *100)/100)-2*Math.PI*c.Value()/360)
 +
        +d.Value()*Math.cos(2*Math.PI*e.Value()*(Math.round(getT0() *100)/100)-2*Math.PI*g.Value()/360);}], {color:"blue", fixed:true, label:false, size:1, name:''})
 +
p_T0h = brd1.create('point', [function(){ return Math.round(getT0() *100)/100;}, 2], {visible: false, color:"blue", fixed:true, label:false, size:1, name:''})
 +
l_T0 = brd1.create('line', [p_T0, p_T0h])
 +
 
 +
//Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
 +
setInterval(function() {
 +
var y=Math.round(getT0() *100)/100
 +
document.getElementById("T_0").innerHTML = y;
 +
}, 0.1);
 +
 
 +
    function getT0() {
 +
 
 +
        var A, B, C, Q;
 +
        if (b.Value() < e.Value()) {
 +
            A = b.Value();
 +
            B = e.Value();
 +
        } else {
 +
            B = b.Value();
 +
            A = e.Value();
 +
        }
 +
 
 +
        console.log('Berechne T0 mit A=' + A, 'B=' + B);
 +
 
 +
        for (var x = 1; x <= 100; x++) {
 +
            C = A / x;
 +
            Q = B / C;
 +
            console.log(x + '. Durchgang: C = ' + C, 'Q = ' + Q);
 +
            if (isInt(Q)) {
 +
                console.log('Q ist eine Qanzzahl!!! T0 ist damit ', 1 / C);
 +
                return 1 / C;
 +
            }
 +
            if (x === 10) {
 +
                return 10;
 +
            }
 +
            if ((1/C) > 10)
 +
                return 10
 +
        }
 +
    }
 +
 
 +
    function isInt(n) {
 +
        return n % 1 === 0;
 +
    }
 +
 
 +
//Ausgabe des Wertes x(t)
 +
setInterval(function() {
 +
document.getElementById("x(t)").innerHTML=Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*t.Value()-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*t.Value()-2*Math.PI*g.Value()/360))*1000)/1000;
 +
}, 0.1);
  
 +
//Ausgabe des Wertes x(t+T_0)
 +
setInterval(function() {
 +
document.getElementById("x(t+T_0)").innerHTML = Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000;
 +
}, 0.1);
  
brd2.createElement('text', [6.95,-1.48, "V"], {fixed:true});
+
//Ausgabe des Wertes x(t+2T_0)
brd2.createElement('text', [7.8,-1.6, "<I>T</I>_0="], {fixed:true});
+
setInterval(function() {
brd2.create('text',[5.4,-1.48, function()
+
document.getElementById("x(t+2T_0)").innerHTML = Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000;
  { return '<I>x(t)</I>='+(a.Value()*Math.cos(2*Math.PI*b.Value()*t.Value()-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*t.Value()-g.Value())).toFixed(3) ;}], {fixed:true});
+
}, 0.1);
  
signaldarstellung = brd1.create('functiongraph',[function(x){
+
//Ausgabe des Wertes x_max
         return (a.Value()*Math.cos(2*Math.PI*b.Value()*x-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*x-2*Math.PI*g.Value()/360))
+
setInterval(function() {
    },0], {strokeColor: "red"});
+
  var x = new Array(50000);
 +
    for (var i = 0; i < 50001; i++) {
 +
         x[i] = Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(i/1000)-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*(i/1000)-2*Math.PI*g.Value()/360)) *1000)/1000;
 +
}
 +
document.getElementById("x_max").innerHTML = Math.max.apply(Math, x);
 +
}, 0.1);
  
 +
//Definition der Funktion zum An- und Ausschalten des Koordinatengitters
 
function showgrid() {
 
function showgrid() {
 
     if (gridbox.checked) {
 
     if (gridbox.checked) {
Line 91: Line 215:
 
     brd1.fullUpdate();
 
     brd1.fullUpdate();
 
};
 
};
 
 
</script>
 
</script>
 
</form>
 
</form>
  
 +
<script>
  
<script>
+
//Definition des Reset-Buttons
 
function zurueck() {
 
function zurueck() {
 
     document.getElementById("myForm").reset();
 
     document.getElementById("myForm").reset();
}
+
};
 
</script>
 
</script>
  

Revision as of 20:26, 9 September 2017

Erklärung.

<applet>


mit Gitter

\(x(t)=A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)\)
x(t)=
x(t+T0)=
x(t+2T0)=
xmax=
T0=