Difference between revisions of "Applets:Periodendauer periodischer Signale"

From LNTwww
Line 43: Line 43:
 
<!-- Resetbutton, Checkbox und Formel -->
 
<!-- Resetbutton, Checkbox und Formel -->
 
<button class="button1" style="font-size:0.750em" onclick="zurueck()">Reset</button>
 
<button class="button1" style="font-size:0.750em" onclick="zurueck()">Reset</button>
<p><span class="separate" style="position:absolute; top:180px; left:550px; font-family:arial; font-size:0.750em;">mit Gitter<input name="gridbox" id="gridbox" type="checkbox" onclick="showgrid();" checked="checked"></span></p>
+
<p><span class="separate" style="position:absolute; top:180px; left:850px; font-family:arial; font-size:0.750em;">mit Gitter<input name="gridbox" id="gridbox" type="checkbox" onclick="showgrid();" checked="checked"></span></p>
 
<box class="formel">\(x(t)=A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)\)</box>
 
<box class="formel">\(x(t)=A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)\)</box>
  
Line 83: Line 83:
 
textd=brd2.create('text',[9.5,1.77, function()
 
textd=brd2.create('text',[9.5,1.77, function()
 
   { return '\\[A_2= '+ Math.round(d.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true, fontSize:14});
 
   { return '\\[A_2= '+ Math.round(d.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true, fontSize:14});
texte=brd2.create('text',[9.5,0.87, function()
+
texte=brd2.create('text',[9.5,0.97, function()
 
   { return '\\[f_2= '+ Math.round(e.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true, fontSize:14});
 
   { return '\\[f_2= '+ Math.round(e.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true, fontSize:14});
 
textg=brd2.create('text',[9.5,-0.13, function()
 
textg=brd2.create('text',[9.5,-0.13, function()

Revision as of 14:13, 13 September 2017

mit Gitter

\(x(t)=A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)\)