Difference between revisions of "Applets:Periodendauer periodischer Signale"

From LNTwww
Line 91: Line 91:
 
   { return '\\[t= '+ Math.round(t.Value()*100)/100 +' \\]';}], {fixed:true, visible:true, fontSize:14});
 
   { return '\\[t= '+ Math.round(t.Value()*100)/100 +' \\]';}], {fixed:true, visible:true, fontSize:14});
  
textergebnis1=brd3.create('text',[-0.75,1.5, function()
+
textergebnis1=brd3.create('text',[-1,1.5, function()
 
   { return '\\[x(t)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*t.Value()-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*t.Value()-2*Math.PI*g.Value()/360))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14});
 
   { return '\\[x(t)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*t.Value()-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*t.Value()-2*Math.PI*g.Value()/360))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14});
 
textergebnis2=brd3.create('text',[1.6,1.5, function()
 
textergebnis2=brd3.create('text',[1.6,1.5, function()

Revision as of 14:43, 13 September 2017

Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$


mit Gitter