Difference between revisions of "Applets:Periodendauer periodischer Signale"

From LNTwww
Line 7: Line 7:
 
}}
 
}}
 
</p>
 
</p>
 +
  
 
<html>
 
<html>
Line 25: Line 26:
 
     border-radius: 15px;
 
     border-radius: 15px;
 
     position:relative;
 
     position:relative;
     top: 205px;
+
     top: 100px;
     left: 530px;
+
     left: 830px;
 
   }
 
   }
  
Line 32: Line 33:
 
     background-color: #939393;}
 
     background-color: #939393;}
  
    .formel {
 
        background-color: #f5f5f5;
 
        border-radius: 4px ;
 
        padding: 20px 30px;
 
        font-family: arial;
 
        position:absolute;
 
        top: 250px;
 
        left: 10px;
 
    }
 
  
 
   </style>
 
   </style>
 
</head>
 
</head>
 
<body>
 
<body>
 +
 +
  
 
<form id="myForm">
 
<form id="myForm">
Line 50: Line 44:
 
<!-- Resetbutton, Checkbox und Formel -->
 
<!-- Resetbutton, Checkbox und Formel -->
 
<button class="button1" style="font-size:0.750em" onclick="zurueck()">Reset</button>
 
<button class="button1" style="font-size:0.750em" onclick="zurueck()">Reset</button>
<p><span class="separate" style="position:absolute; top:180px; left:550px; font-family:arial; font-size:0.750em;">mit Gitter<input name="gridbox" id="gridbox" type="checkbox" onclick="showgrid();" checked="checked"></span></p>
+
<p><span class="separate" style="position:absolute; top:180px; left:850px; font-family:arial; font-size:0.750em;">mit Gitter<input name="gridbox" id="gridbox" type="checkbox" onclick="showgrid();" checked="checked"></span></p>
<box class="formel">\(x(t)=A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)\)</box>
 
  
<div id="box1" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:300px 20px 100px 0px;"></div>
+
 
<div id="box2" class="jxgbox" style="width:500px; height:200px; border:1px solid white; margin:-1000px 20px 100px 0px;"></div>
+
<div id="box1" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:100px 20px 0px 0px;"></div>
<div id="box3" class="jxgbox" style="width:600px; height:100px; border:1px solid white; margin:700px 20px 100px 0px;"></div>
+
<div id="box2" class="jxgbox" style="width:600px; height:150px; border:1px solid black; margin:-760px 20px 0px 0px;"></div>
 +
<div id="box3" class="jxgbox" style="width:600px; height:100px; border:1px solid white; margin:625px 20px 0px 0px;"></div>
  
 
<script type="text/javascript">
 
<script type="text/javascript">
Line 82: Line 76:
  
 
//Definition der Ausgabefelder
 
//Definition der Ausgabefelder
texta=brd2.create('text',[3.2,1.7, function()
+
texta=brd2.create('text',[2.8,1.87, function()
   { return '\\[A_1= '+ Math.round(a.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true});
+
   { return '\\[A_1= '+ Math.round(a.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true, fontSize:14});
textb=brd2.create('text',[3.2,0.7, function()
+
textb=brd2.create('text',[2.8,0.87, function()
   { return '\\[f_1= '+ Math.round(b.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true});
+
   { return '\\[f_1= '+ Math.round(b.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true, fontSize:14});
textc=brd2.create('text',[3.2,-0.3, function()
+
textc=brd2.create('text',[2.8,-0.13, function()
   { return '\\[\\phi_1= '+ Math.round(c.Value()*100)/100 +' \\text{ Grad}\\]';}], {fixed:true, visible:true});
+
   { return '\\[\\phi_1= '+ Math.round(c.Value()*100)/100 +' \\text{ Grad}\\]';}], {fixed:true, visible:true, fontSize:14});
textd=brd2.create('text',[9.9,1.57, function()
+
textd=brd2.create('text',[9.5,1.67, function()
   { return '\\[A_2= '+ Math.round(d.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true});
+
   { return '\\[A_2= '+ Math.round(d.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true, fontSize:14});
texte=brd2.create('text',[9.9,0.57, function()
+
texte=brd2.create('text',[9.5,0.67, function()
   { return '\\[f_2= '+ Math.round(e.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true});
+
   { return '\\[f_2= '+ Math.round(e.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true, fontSize:14});
textg=brd2.create('text',[9.9,-0.43, function()
+
textg=brd2.create('text',[9.5,-0.33, function()
   { return '\\[\\phi_2= '+ Math.round(g.Value()*100)/100 +' \\text{ Grad}\\]';}], {fixed:true, visible:true});
+
   { return '\\[\\phi_2= '+ Math.round(g.Value()*100)/100 +' \\text{ Grad}\\]';}], {fixed:true, visible:true, fontSize:14});
textt=brd2.create('text',[3.2,-1.3, function()
+
textt=brd2.create('text',[2.8,-1.2, function()
   { return '\\[t= '+ Math.round(t.Value()*100)/100 +' \\]';}], {fixed:true, visible:true});
+
   { return '\\[t= '+ Math.round(t.Value()*100)/100 +' \\]';}], {fixed:true, visible:true, fontSize:14});
  
 
textergebnis1=brd3.create('text',[-0.5,1.5, function()
 
textergebnis1=brd3.create('text',[-0.5,1.5, function()
   { return '\\[x(t)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*t.Value()-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*t.Value()-2*Math.PI*g.Value()/360))*1000)/1000 +' \\]';}], {fixed:true, visible:true});
+
   { return '\\[x(t)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*t.Value()-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*t.Value()-2*Math.PI*g.Value()/360))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14});
 
textergebnis2=brd3.create('text',[1.6,1.5, function()
 
textergebnis2=brd3.create('text',[1.6,1.5, function()
   { return '\\[x(t+T_0)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000 +' \\]';}], {fixed:true, visible:true});
+
   { return '\\[x(t+T_0)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14});
 
textergebnis3=brd3.create('text',[4.5,1.5, function()
 
textergebnis3=brd3.create('text',[4.5,1.5, function()
   { return '\\[x(t+2T_0)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000 +' \\]';}], {fixed:true, visible:true});
+
   { return '\\[x(t+2T_0)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14});
textergebnis4=brd3.create('text',[7.75,1.5, function()
+
textergebnis4=brd3.create('text',7.75,1.5, function()
 
{var x = new Array(50000);
 
{var x = new Array(50000);
 
for (var i = 0; i < 50001; i++) {x[i] = Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(i/1000)-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*(i/1000)-2*Math.PI*g.Value()/360)) *1000)/1000;};
 
for (var i = 0; i < 50001; i++) {x[i] = Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(i/1000)-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*(i/1000)-2*Math.PI*g.Value()/360)) *1000)/1000;};
return '\\[x_{max}= '+ Math.max.apply(Math,x)+' \\]';}], {fixed:true, visible:true});
+
return '\\[x_{max}= '+ Math.max.apply(Math,x)+' \\]';}], {fixed:true, visible:true, fontSize:14});
 
textergebnis5=brd3.create('text',[10.5,1.5, function()
 
textergebnis5=brd3.create('text',[10.5,1.5, function()
   { return '\\[T_0= '+ Math.round(getT0() *100)/100 +' \\]';}], {fixed:true, visible:true, strokeColor:'blue'});
+
   { return '\\[T_0= '+ Math.round(getT0() *100)/100 +' \\]';}], {fixed:true, visible:true, strokeColor:'blue', fontSize:14});
  
  
Line 183: Line 177:
 
</body>
 
</body>
 
</html>
 
</html>
 
  
  
 
{{Display}}
 
{{Display}}

Revision as of 14:49, 13 September 2017

Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$


mit Gitter