Difference between revisions of "Applets:Periodendauer periodischer Signale"
From LNTwww
David.Jobst (talk | contribs) |
David.Jobst (talk | contribs) |
||
Line 46: | Line 46: | ||
<button class="button" onclick="rst()">Reset</button> | <button class="button" onclick="rst()">Reset</button> | ||
</p> | </p> | ||
+ | <div id="plotBoxHtml" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:100px 20px 0px 0px;"></div> | ||
+ | <div id="cnfBoxHtml" class="jxgbox" style="width:600px; height:150px; border:1px solid white; margin:-760px 20px 0px 0px;"></div> | ||
+ | <div id="outBoxHtml" class="jxgbox" style="width:600px; height:100px; border:1px solid white; margin:625px 20px 0px 0px;"></div> | ||
− | + | </form> | |
− | |||
− | |||
− | |||
<script type="text/javascript"> | <script type="text/javascript"> | ||
//Grundeinstellungen der beiden Applets | //Grundeinstellungen der beiden Applets | ||
JXG.Options.text.useMathJax = true; | JXG.Options.text.useMathJax = true; | ||
− | var brd1 = JXG.JSXGraph.initBoard(' | + | var brd1 = JXG.JSXGraph.initBoard('plotBoxHtml', {showCopyright:false, axis:false, zoom:{factorX:1.1, factorY:1.1, wheel:true, needshift:true, eps: 0.1}, grid:false, boundingbox: [-0.5, 2.2, 12.4, -2.2]}); |
− | var brd2 = JXG.JSXGraph.initBoard(' | + | var brd2 = JXG.JSXGraph.initBoard('cnfBoxHtml', {showCopyright:false, showNavigation:false, axis:false, grid:false, zoom:{enabled:false}, pan:{enabled:false}, boundingbox: [-1, 2.2, 12.4, -2.2]}); |
− | var brd3 = JXG.JSXGraph.initBoard(' | + | var brd3 = JXG.JSXGraph.initBoard('outBoxHtml', {showCopyright:false, showNavigation:false, axis:false, grid:false, zoom:{enabled:false}, pan:{enabled:false}, boundingbox: [-1, 2.2, 12.4, -2.2]}); |
brd2.addChild(brd1); | brd2.addChild(brd1); | ||
brd2.addChild(brd3); | brd2.addChild(brd3); | ||
Line 164: | Line 164: | ||
}; | }; | ||
</script> | </script> | ||
− | + | ||
<script> | <script> |
Revision as of 17:57, 13 September 2017
Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$