Difference between revisions of "Applets:Periodendauer periodischer Signale"

From LNTwww
Line 1: Line 1:
{{LntExplicitLoadMathjax}}
 
 
 
<p>
 
<p>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Line 31: Line 29:
 
   </style>
 
   </style>
 
</head>
 
</head>
<body>
+
<body onload="drawNow()">
  
  
Line 47: Line 45:
  
 
</form>
 
</form>
<script type="text/javascript">
+
<script type="text/javascript" async>
  
 +
function drawNow() {
 
//Grundeinstellungen der beiden Applets
 
//Grundeinstellungen der beiden Applets
 
JXG.Options.text.useMathJax = true;
 
JXG.Options.text.useMathJax = true;
Line 111: Line 110:
 
p_T0h = plotBox.create('point', [function(){ return Math.round(getT0() *100)/100;}, 2], {visible: false, color:"blue", fixed:true, label:false, size:1, name:''})
 
p_T0h = plotBox.create('point', [function(){ return Math.round(getT0() *100)/100;}, 2], {visible: false, color:"blue", fixed:true, label:false, size:1, name:''})
 
l_T0 = plotBox.create('line', [p_T0, p_T0h])
 
l_T0 = plotBox.create('line', [p_T0, p_T0h])
 +
};
  
 
//Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
 
//Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
Line 172: Line 172:
 
</body>
 
</body>
 
</html>
 
</html>
 
 
{{Display}}
 

Revision as of 22:04, 14 September 2017

Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$