Difference between revisions of "Aufgaben:Exercise 1.3: Rectangular Functions for Transmitter and Receiver"

From LNTwww
Line 5: Line 5:
 
Wir betrachten hier drei Varianten eines binären bipolaren AWGN–Übertragungssystems, die sich hinsichtlich des Sendegrundimpulses $g_{\rm s}(t)$ sowie der Impulsantwort $h_{\rm E}(t)$ des Empfangsfilters unterscheiden:
 
Wir betrachten hier drei Varianten eines binären bipolaren AWGN–Übertragungssystems, die sich hinsichtlich des Sendegrundimpulses $g_{\rm s}(t)$ sowie der Impulsantwort $h_{\rm E}(t)$ des Empfangsfilters unterscheiden:
 
*Beim System A sind beide Zeitfunktionen $g_{\rm s}(t)$ und $h_{\rm E}(t)$ rechteckförmig, lediglich die Impulshöhen ($s_{\rm 0}$ bzw. $1/T$) sind unterschiedlich.
 
*Beim System A sind beide Zeitfunktionen $g_{\rm s}(t)$ und $h_{\rm E}(t)$ rechteckförmig, lediglich die Impulshöhen ($s_{\rm 0}$ bzw. $1/T$) sind unterschiedlich.
*Das System B unterscheidet sich vom System A durch einen dreieckförmigen Sendegrundimpuls mit <i>g<sub>s</sub></i>(<i>t</i> = 0) = <i>s</i><sub>0</sub>.
+
*Das System B unterscheidet sich vom System A durch einen dreieckförmigen Sendegrundimpuls mit $g_{\rm s}(t=0) = s_{\rm 0}$.
*Das System C hat den gleichen Sendegrundimpuls wie das System A, während die Impulsantwort mit <i>h</i><sub>E</sub>(<i>t</i> = 0) = 1/<i>T</i> dreieckförmig verläuft.
+
*Das System C hat den gleichen Sendegrundimpuls wie das System A, während die Impulsantwort mit $h_{\rm E}(t=0) = 1/T$ dreieckförmig verläuft.
Die absolute Breite der hier betrachteten Rechteck&ndash; und Dreieckfunktionen beträgt jeweils <i>T</i> = 10 &mu;s. Die Bitrate ist <i>R</i> = 100 kbit/s. Die weiteren Systemparameter sind wie folgt gegeben:
+
Die absolute Breite der hier betrachteten Rechteck&ndash; und Dreieckfunktionen beträgt jeweils $T = 10 \ \rm \mu s$. Die Bitrate ist $R = 100 \ \rm kbit/s$. Die weiteren Systemparameter sind wie folgt gegeben:
:$$s_0 = 6 \,\,\sqrt{W}\hspace{0.05cm},\hspace{0.3cm}  N_0 = 2 \cdot 10^{-5} \,\,{\rm W/Hz}\hspace{0.05cm}.$$
+
:$$s_0 = 6 \,\,\sqrt{W}\hspace{0.05cm},\hspace{0.3cm}  N_{\rm 0} = 2 \cdot 10^{-5} \,\,{\rm W/Hz}\hspace{0.05cm}.$$
 
''Hinweise:''  
 
''Hinweise:''  
  
Line 16: Line 16:
  
 
Berücksichtigen Sie bei der Berechnung der Detektionsstörleistung das Theorem von Wiener–Chintchine:
 
Berücksichtigen Sie bei der Berechnung der Detektionsstörleistung das Theorem von Wiener–Chintchine:
$$ \sigma _d ^2  = \frac{N_0 }{2} \cdot \int_{ - \infty }^{
+
:$$ \sigma _d ^2  = \frac{N_0 }{2} \cdot \int_{ - \infty }^{
 
+ \infty } {\left| {H_{\rm E}( f )} \right|^2
 
+ \infty } {\left| {H_{\rm E}( f )} \right|^2
 
\hspace{0.1cm}{\rm{d}}f} = \frac{N_0 }{2} \cdot \int_{ -
 
\hspace{0.1cm}{\rm{d}}f} = \frac{N_0 }{2} \cdot \int_{ -

Revision as of 13:32, 1 November 2017

Vergleich dreier verschiedener Systemkonzepte

Wir betrachten hier drei Varianten eines binären bipolaren AWGN–Übertragungssystems, die sich hinsichtlich des Sendegrundimpulses $g_{\rm s}(t)$ sowie der Impulsantwort $h_{\rm E}(t)$ des Empfangsfilters unterscheiden:

  • Beim System A sind beide Zeitfunktionen $g_{\rm s}(t)$ und $h_{\rm E}(t)$ rechteckförmig, lediglich die Impulshöhen ($s_{\rm 0}$ bzw. $1/T$) sind unterschiedlich.
  • Das System B unterscheidet sich vom System A durch einen dreieckförmigen Sendegrundimpuls mit $g_{\rm s}(t=0) = s_{\rm 0}$.
  • Das System C hat den gleichen Sendegrundimpuls wie das System A, während die Impulsantwort mit $h_{\rm E}(t=0) = 1/T$ dreieckförmig verläuft.

Die absolute Breite der hier betrachteten Rechteck– und Dreieckfunktionen beträgt jeweils $T = 10 \ \rm \mu s$. Die Bitrate ist $R = 100 \ \rm kbit/s$. Die weiteren Systemparameter sind wie folgt gegeben:

$$s_0 = 6 \,\,\sqrt{W}\hspace{0.05cm},\hspace{0.3cm} N_{\rm 0} = 2 \cdot 10^{-5} \,\,{\rm W/Hz}\hspace{0.05cm}.$$

Hinweise:

Die Aufgabe bezieht sich auf das Fehlerwahrscheinlichkeit bei Basisbandübertragung des vorliegenden Buches. Zur Bestimmung von Fehlerwahrscheinlichkeiten können Sie das folgende Interaktionsmodul verwenden:

Komplementäre Gaußsche Fehlerfunktionen

Berücksichtigen Sie bei der Berechnung der Detektionsstörleistung das Theorem von Wiener–Chintchine:

$$ \sigma _d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H_{\rm E}( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {h_{\rm E}( t )} \right|^2 \hspace{0.1cm}{\rm{d}}t}\hspace{0.05cm}.$$

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.