Difference between revisions of "Aufgaben:Exercise 4.1Z: Other Basis Functions"

From LNTwww
Line 51: Line 51:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''   
+
'''(1)'''  Der einzige Unterschied zur Aufgabe A4.1 ist die unterschiedliche Nummerierung der Signale $s_i(t)$. Damit ist offensichtlich, dass auch hier $\underline {N = 3}$ gelten muss.
'''(2)'''   
+
 
'''(3)'''   
+
 
 +
'''(2)'''  Die 2–Norm gibt die Wurzel aus der Signalenergie an und ist vergleichbar mit dem Effektivwert bei leistungsbegrenzten Signalen. Die ersten drei Signale haben alle die 2–Norm
 +
:$$||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline {  = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
 +
 
 +
Die Norm des letzten Signals ist um den Faktor „Wurzel aus 2” größer:
 +
:$$||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Die <u>erste und die letzte Aussage sind zutreffend</u> im Gegensatz zu den Aussagen 2 und 3:
 +
* Es wäre völlig unlogisch, wenn die gefundenen Basisfunktionen bei anderer Sortierung der Signale $s_i(t)$ nicht mehr gelten sollten.
 +
* Das Gram&ndash;Schmidt&ndash;Verfahren liefert nur einen möglichen Basisfunktionssatz $\{\varphi_{\it j}(t)\}$. Bei anderer Sortierung ergibt sich (möglicherweise) ein anderer. Die Anzahl der Permutationen von $M = 4$ Signalen ist $4! = 24$. Mehr Basisfunktionssätze kann es auf keinen Fall geben. Daraus folgt: der Lösungsvorschlag 2 ist falsch.
 +
* Wahrscheinlich gibt es (wegen $N = 3$) aber nur $3! = 6$ mögliche Basisfunktionssätze. Wie aus der [[Aufgaben:4.1_Gram-Schmidt-Verfahren| Musterlösung]] zur Aufgabe A4.1 ersichtlich ist, werden sich mit der Reihenfolge $s_1(t), s_2(t), s_4(t), s_3(t)$ die gleichen Basisfunktionen ergeben wie mit $s_1(t), s_2(t), s_3(t), s_4(t)$. Dies ist aber nur eine Vermutung der Autoren; wir haben es nicht überprüft.
 +
* Die Aussage 3 kann allein schon wegen den unterschiedlichen Einheiten von $s_i(t)$ und $\varphi_{\it j}(t)$ nicht stimmen. Die Signale weisen wie $A$ die Einheit &bdquo;Wurzel aus Watt&rdquo; auf, die Basisfunktionen die Einheit &bdquo;1 durch Wurzel aus Sekunde&rdquo;.
 +
* Richtig ist somit die letzte Lösungsalternative, wobei für $K$ gilt:
 +
:$$K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.$$
 +
 
 +
 
 
'''(4)'''&nbsp;  
 
'''(4)'''&nbsp;  
 +
 +
 
'''(5)'''&nbsp;  
 
'''(5)'''&nbsp;  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 09:52, 4 November 2017

Energiebegrenzte Signale

Diese Aufgabe verfolgt das genau gleiche Ziel wie die Aufgabe A4.1. Für $M = 4$ energiebegrenzte Signale $s_i(t)$ mit $i = 1, \ ... \ , 4$ sollen die $N$ erforderlichen orthonormalen Basisfunktionen $\varphi_{\it j}(t)$ gefunden werden, die folgende Bedingung erfüllen müssen.

$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t =\\ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm \delta}_{jk} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} j = k \\ j \ne k \\ \end{array} \hspace{0.05cm}.$$

Mit $M$ Sendesignale $s_i(t)$ können bereits weniger Basisfunktionen $\varphi_{\it j}(t)$ ausreichen, nämlich $N$. Allgemein gilt also $N ≤ M$.

Es handelt sich hier um die genau gleichen energiebegrenzten Signale $s_i(t)$ wie in der Aufgabe A4.1. Der Unterschied ist die unterschiedliche Reihenfolge der Signale $s_i(t)$. Diese sind in dieser Aufgabe so sortiert, dass die Basisfunktionen auch ohne Anwendung des umständlicheren Gram–Schmidt–Verfahrens gefunden werden können.

Hinweise:

$$A = 1 \sqrt{\rm W} , \hspace{0.2cm} T = 1\,{\rm \mu s} \hspace{0.05cm}. $$


Fragebogen

1

In Aufgabe A4.1 hat das Gram–Schmidt–Verfahren zu $N = 3$ Basisfunktionen geführt. Wieviele Basisfunktionen benötigt man hier?

$N$ =

2

Geben Sie die 2–Norm aller Signale an:

$||s_1(t)||$ =

$\ 10^{\rm –3} \ \rm (Ws)^{\rm 0.5} $
$||s_2(t)||$ =

$\ 10^{\rm –3} \ \rm (Ws)^{\rm 0.5} $
$||s_3(t)||$ =

$\ 10^{\rm –3} \ \rm (Ws)^{\rm 0.5} $
$||s_4(t)||$ =

$\ 10^{\rm –3} \ \rm (Ws)^{\rm 0.5} $

3

Welche Aussagen gelten für die Basisfunktionen $\varphi_1(t)$, $\varphi_2(t)$ und $\varphi_3(t)$?

Die in A4.1 berechneten Basisfunktionen sind auch hier geeignet.
Es gibt unendlich viele Möglichkeiten für $\{\varphi_1(t), \varphi_2(t), \varphi_3(t)\}$.
Ein möglicher Satz lautet $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$, mit $j = 1, 2, 3$.
Ein möglicher Satz lautet $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit $j = 1, 2, 3$.

4

Wie lauten die Koeffizienten des Signals $s_4(t)$, bezogen auf die Basisfunktionen $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit $j = 1, 2, 3$?

$s_{\rm 41}$ =

$\ 10^{\rm –3} \ \rm (Ws)^{\rm 0.5} $
$s_{\rm 42}$ =

$\ 10^{\rm –3} \ \rm (Ws)^{\rm 0.5} $
$s_{\rm 43}$ =

$\ 10^0 \ \rm (Ws)^{\rm 0.5} $


Musterlösung

(1)  Der einzige Unterschied zur Aufgabe A4.1 ist die unterschiedliche Nummerierung der Signale $s_i(t)$. Damit ist offensichtlich, dass auch hier $\underline {N = 3}$ gelten muss.


(2)  Die 2–Norm gibt die Wurzel aus der Signalenergie an und ist vergleichbar mit dem Effektivwert bei leistungsbegrenzten Signalen. Die ersten drei Signale haben alle die 2–Norm

$$||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline { = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$

Die Norm des letzten Signals ist um den Faktor „Wurzel aus 2” größer:

$$||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$


(3)  Die erste und die letzte Aussage sind zutreffend im Gegensatz zu den Aussagen 2 und 3:

  • Es wäre völlig unlogisch, wenn die gefundenen Basisfunktionen bei anderer Sortierung der Signale $s_i(t)$ nicht mehr gelten sollten.
  • Das Gram–Schmidt–Verfahren liefert nur einen möglichen Basisfunktionssatz $\{\varphi_{\it j}(t)\}$. Bei anderer Sortierung ergibt sich (möglicherweise) ein anderer. Die Anzahl der Permutationen von $M = 4$ Signalen ist $4! = 24$. Mehr Basisfunktionssätze kann es auf keinen Fall geben. Daraus folgt: der Lösungsvorschlag 2 ist falsch.
  • Wahrscheinlich gibt es (wegen $N = 3$) aber nur $3! = 6$ mögliche Basisfunktionssätze. Wie aus der Musterlösung zur Aufgabe A4.1 ersichtlich ist, werden sich mit der Reihenfolge $s_1(t), s_2(t), s_4(t), s_3(t)$ die gleichen Basisfunktionen ergeben wie mit $s_1(t), s_2(t), s_3(t), s_4(t)$. Dies ist aber nur eine Vermutung der Autoren; wir haben es nicht überprüft.
  • Die Aussage 3 kann allein schon wegen den unterschiedlichen Einheiten von $s_i(t)$ und $\varphi_{\it j}(t)$ nicht stimmen. Die Signale weisen wie $A$ die Einheit „Wurzel aus Watt” auf, die Basisfunktionen die Einheit „1 durch Wurzel aus Sekunde”.
  • Richtig ist somit die letzte Lösungsalternative, wobei für $K$ gilt:
$$K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.$$


(4) 


(5)