Difference between revisions of "Aufgaben:Exercise 2.1Z: About the Equivalent Bitrate"

From LNTwww
Line 5: Line 5:
  
  
[[File:P_ID1309__Dig_Z_2_1.png|right|frame|Quellen- und Codersignal]]
+
[[File:P_ID1309__Dig_Z_2_1.png|right|frame|Quellensignal (oben) und Codersignal (unten)]]
 
Die obere Darstellung zeigt das Quellensignal $q(t)$ einer redundanzfreien Binärquelle mit Bitdauer $T_{q}$ und Bitrate $R_{q}$. Die beiden Signalparameter $T_{q}$ und $R_{q}$ können der Skizze entnommen werden.
 
Die obere Darstellung zeigt das Quellensignal $q(t)$ einer redundanzfreien Binärquelle mit Bitdauer $T_{q}$ und Bitrate $R_{q}$. Die beiden Signalparameter $T_{q}$ und $R_{q}$ können der Skizze entnommen werden.
  
Line 15: Line 15:
  
  
''Hinweis:''
+
 
 +
''Hinweise:''  
 +
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]].
 +
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 +
*Bei dem hier betrachteten Übertragungscode handelt es sich um den Bipolarcode zweiter Ordnung, was jedoch für die Lösung dieser Aufgabe nicht von Bedeutung ist.
  
  
Die Aufgabe bezieht sich auf  [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]] dieses Buches. Bei dem hier betrachteten Übertragungscode handelt es sich um den Bipolarcode zweiter Ordnung, was jedoch für die Lösung dieser Aufgabe nicht von Bedeutung ist.
 
  
 
===Fragebogen===
 
===Fragebogen===

Revision as of 16:00, 16 November 2017


Quellensignal (oben) und Codersignal (unten)

Die obere Darstellung zeigt das Quellensignal $q(t)$ einer redundanzfreien Binärquelle mit Bitdauer $T_{q}$ und Bitrate $R_{q}$. Die beiden Signalparameter $T_{q}$ und $R_{q}$ können der Skizze entnommen werden.

Dieses Binärsignal wird symbolweise codiert und ergibt das unten gezeichnete Codersignal $c(t)$. Alle möglichen Codesymbole kommen in dem dargestellten Signalausschnitt der Dauer $6 \ \rm \mu s$ vor. Mit der Stufenzahl $M_{c}$ und der Symboldauer $T_{c}$ kann man die äquivalente Bitrate – oder den Informationsfluss – des Codersignals angeben:

$$R_c = \frac{{\rm log_2} (M_c)}{T_c} \hspace{0.05cm}.$$

Daraus erhält man die relative Redundanz des Codes, wenn man wie hier davon ausgeht, dass die Quelle selbst redundanzfrei ist:

$$r_c = \frac{R_c - R_q}{R_c}\hspace{0.05cm}.$$


Hinweise:

  • Die Aufgabe gehört zum Kapitel Grundlagen der codierten Übertragung.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Bei dem hier betrachteten Übertragungscode handelt es sich um den Bipolarcode zweiter Ordnung, was jedoch für die Lösung dieser Aufgabe nicht von Bedeutung ist.


Fragebogen

1

Geben Sie Bitdauer $(T_{q})$ und Bitrate $(R_{q})$ der Quelle an

$T_{q} \ = \ $

$\ \rm \mu s $
$R_{q} \ = \ $

$\ \rm Mbit/s $

2

Wie groß sind Symboldauer $(T_{c})$ und Stufenzahl $(M_{c})$ des Codersignals?

$T_{c} \ = \ $

$\ \rm \mu s $
$M_{c} \ = \ $

3

Wie groß ist die äquivalente Bitrate $R_{c}$ des Codersignals?

$R_{c} \ = \ $

$\ \rm Mbit/s $

4

Geben Sie die relative Redundanz des Codes an.

$r_{c} \ = \ $

$\ \% $


Musterlösung

(1)  Die Bitdauer $T_{q} = \underline{0.5\ \mu s}$ kann der Grafik entnommen werden. Da die Quelle binär und redundanzfrei ist, gilt für die Bitrate der Quelle: $R_{q}= 1/T_{q}\ \underline{= 2\ \rm Mbit/s}$.

(2)  Bei symbolweiser Codierung gilt stets $T_{c} = T_{q}$. Im vorliegenden Beispiel ist somit auch $T_{c}\ \underline{ = 0.5\ \rm \mu s}$. Die Stufenzahl $M_{c}\ \underline{ = 3}$ kann aus der unteren Skizze abgelesen werden.

(3)  Die Symbolrate des Codersignals beträgt $2 \cdot 10^{6}$ Ternärsymbole pro Sekunde. Für die äquivalente Bitrate gilt dagegen:

$$R_c = \frac{{\rm log_2} (M_c)}{T_c} = \frac{{\rm log_2}(3)}{0.5\,\,{\rm \mu s}} = \frac{{\rm lg} (3)}{{\rm lg} (2) \cdot 0.5\,\,{\rm \mu s}}= \frac{1.585\,\,{\rm (bit)}}{0.5\,\,{\rm \mu s}}\hspace{0.15cm} \underline {\approx 3.17\,\,{\rm Mbit/s}} \hspace{0.05cm}.$$

(4)  Für die relative Coderedundanz gilt bei redundanzfreier Quelle allgemein:

$$ r_c = \frac{R_c - R_q}{R_c} = 1- \frac{R_q}{R_c}= 1- \frac{T_c}{T_q \cdot {\rm log_2} (M_c)}\hspace{0.05cm}.$$

Beim hier betrachteten Biploarcodes 2. Ordnung mit den Parametern $T_{c} = T_{q}$ und $M_{c} = 3$ gilt weiter:

$$r_c = 1- \frac{1}{{\rm log_2} (3)}\hspace{0.15cm}\underline {\approx 36.9 \% }\hspace{0.05cm}.$$