Difference between revisions of "Aufgaben:Exercise 4.10: Union Bound"

From LNTwww
Line 64: Line 64:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''   
+
'''(1)'''&nbsp; Die Punkte $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ sind für alle Konfigurationen gleich. Die kleinste Fehlerwahrscheinlichkeit ergibt sich, wenn $\boldsymbol{s}_0$ von $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ am weitesten entfernt liegt. Dies ist bei der Konfiguration $C$ der Fall &#8658; <u>Lösungsvorschlag 3</u>.
'''(2)'''&nbsp;  
+
 
'''(3)'''&nbsp;  
+
 
 +
'''(2)'''&nbsp; Bei der Konfiguration $A$ ist der Abstand zwischen allen Punkten gleich: $d_{01} = d_{02} = d_{12} = 2$. Deshalb muss zur Berechnung der <i>Union Bound</i> nicht über alle Symbole gemittelt werden, und es gilt, da zum Beispiel $\boldsymbol{s}_0$ mit gleicher Wahrscheinlichkeit in das Symbol $\boldsymbol{s}_1$ bzw. $\boldsymbol{s}_2$ verfälscht wird:
 +
:$${\rm Pr}({ \cal E}) \le p_{{\rm UB}} = 2 \cdot {\rm Q} \left ( \frac{d_{ik}/2}{\sigma_n} \right ) = 2 \cdot {\rm Q}(2) \approx 2 \cdot 0.023 \hspace{0.1cm}\hspace{0.15cm}\underline {= 0.046} \hspace{0.05cm}. $$
 +
 
 +
 
 +
'''(3)'''&nbsp; Hier unterscheiden sich die Verfälschungswahrscheinlichkeiten für die einzelnen Symbole. Wurde $\boldsymbol{s}_0$ gesendet, so gilt mit $d_{01} = d_{02} = 2^{0.5}$ und $\sigma = 0.5$:
 +
:$$
 +
 
 +
 
 
'''(4)'''&nbsp;  
 
'''(4)'''&nbsp;  
 +
 +
 
'''(5)'''&nbsp;  
 
'''(5)'''&nbsp;  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 18:00, 16 November 2017

Signalraumkonstellationen mit N = 2, M = 3

Die so genannte „Union Bound” gibt eine obere Schranke für die Fehlerwahrscheinlichkeit eines nichtbinären Übertragungssystems ($M > 2$) an. Die tatsächliche (mittlere) Fehlerwahrscheinlichkeit ist allgemein wie folgt gegeben:

$${\rm Pr}({ \cal E}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sum\limits_{i = 0 }^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) \hspace{0.05cm},$$
$$ {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr} \left [ \bigcup_{k \ne i} { \cal E}_{ik}\right ] \hspace{0.05cm},\hspace{0.2cm}{ \rm wobei}$$
$${ \cal E}_{ik}: \boldsymbol{ r }{\rm \hspace{0.15cm}liegt \hspace{0.15cm}n\ddot{a}her \hspace{0.15cm}bei \hspace{0.15cm}}\boldsymbol{ s }_k {\rm \hspace{0.15cm}als \hspace{0.15cm}beim \hspace{0.15cm}Sollwert \hspace{0.15cm}}\boldsymbol{ s }_i \hspace{0.05cm}.$$

Die einfachere Union Bound liefert eine obere Schranke für die Verfälschungswahrscheinlichkeit unter der Voraussetzung, dass die Nachricht $m_i$ (bzw. das Signal $\boldsymbol{s}_i$) gesendet wurde:

$$p_{{\rm UB}\hspace{0.05cm}| \hspace{0.05cm}\boldsymbol{ s }_i} \hspace{-0.1cm} \ \ge \ \hspace{-0.1cm} {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s }_i ) = {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_i )\hspace{0.05cm},\ $$
$$ p_{{\rm UB}\hspace{0.05cm}| \hspace{0.05cm}\boldsymbol{ s }_i} \hspace{-0.1cm} \ = \ \hspace{-0.2cm}\sum\limits_{k = 0 ,\hspace{0.1cm} k \ne i}^{M-1}\hspace{-0.1cm} {\rm Pr}({ \cal E}_{ik}) = \hspace{-0.1cm}\sum\limits_{k = 0, \hspace{0.1cm} k \ne i}^{M-1}\hspace{-0.1cm}{\rm Q} \left ( \frac{d_{ik}/2}{\sigma_n} \right )\hspace{0.05cm}. $$

Dabei sind folgende Abkürzungen verwendet:

  • ${\rm Q}(x)$ ist die komplementäre Gaußsche Fehlerfunktion,
  • $d_{ik}$ bezeichnet den Abstand der Signalpunkte $\boldsymbol{s}_i$ und $\boldsymbol{s}_k$,
  • $\sigma_n$ gibt der Effektivwert (⇒ Wurzel aus der Varianz) des additiven weißen Gaußschen Rauschens an.


Durch Mittelung über alle möglichen Signale $\boldsymbol{s}_i$ kommt man dann zur eigentlichen Union Bound:

$$p_{\rm UB} = \sum\limits_{i = 0 }^{M-1} {\rm Pr}(\boldsymbol{ s }_i) \cdot p_{{\rm UB}\hspace{0.05cm}| \hspace{0.05cm}\boldsymbol{ s }_i} \ge {\rm Pr}({ \cal E}) \hspace{0.05cm}.$$

Die Grafik zeigt drei verschiedene Signalraumkonstellationen mit jeweils $M = 3$ Signalpunkten $\boldsymbol{s}_0$, $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ im zweidimensionalen Raum ($N = 2$). Die Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$ sind geeignet normiert. Somit sind auch die Signalraumkoordinaten reine Zahlenwerte ohne Einheit:

$$\boldsymbol{ s }_1 = (-1, \hspace{0.1cm}+1)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_2 = (+1, \hspace{0.1cm}+1)\hspace{0.05cm}.$$

Der Signalraumpunkt $\boldsymbol{s}_0$ in der Konfiguration $A$ liegt so, dass $\boldsymbol{s}_0$, $\boldsymbol{s}_1$, $\boldsymbol{s}_2$ ein gleichseitiges Dreieck beschreiben. Bei der Konfiguration $B$ und $C$ gilt dagegen $\boldsymbol{s}_0 = (0, 0)$ bzw. $\boldsymbol{s}_0 = (0, \ –1)$. Verwenden Sie für alle Berechnungen den AWGN–Effektivwert $\sigma_n = 0.5$.

Hinweise:

$${\rm Q}(1) \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm} 0.159\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(\sqrt{2}) \approx 0.079\hspace{0.05cm}, \hspace{0.23cm}{\rm Q}(\sqrt{3}) \approx 0.042\hspace{0.05cm},$$
$${\rm Q}(2) \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm} 0.023\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(2.14) \approx 0.016\hspace{0.05cm}, \hspace{0.1cm}{\rm Q}(\sqrt{5}) \approx 0.013 \hspace{0.05cm}.$$


Fragebogen

1

Welche der drei Konfigurationen führt zur kleinsten Fehlerwahrscheinlichkeit (zumindest nach der Union Bound–Näherung)?

Konfiguration $A$,
Konfiguration $B$,
Konfiguration $C$.

2

Berechnen Sie die „gemittelte Union Bound” ($p_{\rm UB}$) für die Konfiguration $A$.

${\rm Konfiguration \ \it A} \text{:} \hspace{0.4cm} p_{\rm UB} \ = \ $

3

Berechnen Sie die „gemittelte Union Bound” ($p_{\rm UB}$) für die Konfiguration $B$.

${\rm Konfiguration \ \it B} \text{:} \hspace{0.4cm} p_{\rm UB} \ = \ $

4

Berechnen Sie die „gemittelte Union Bound” ($p_{\rm UB}$) für die Konfiguration $C$.

${\rm Konfiguration \ \it C} \text{:} \hspace{0.4cm} p_{\rm UB} \ = \ $

5

Wie müsste der Rauscheffektivwert $\sigma_n$ bei Konfiguration $A$ verändert werden, damit sich die gleiche Union Bound wie in Teilaufgabe (4) ergibt?

${\rm Konfiguration \ \it A} \text{:} \hspace{0.4cm} \sigma_n \ = \ $


Musterlösung

(1)  Die Punkte $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ sind für alle Konfigurationen gleich. Die kleinste Fehlerwahrscheinlichkeit ergibt sich, wenn $\boldsymbol{s}_0$ von $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ am weitesten entfernt liegt. Dies ist bei der Konfiguration $C$ der Fall ⇒ Lösungsvorschlag 3.


(2)  Bei der Konfiguration $A$ ist der Abstand zwischen allen Punkten gleich: $d_{01} = d_{02} = d_{12} = 2$. Deshalb muss zur Berechnung der Union Bound nicht über alle Symbole gemittelt werden, und es gilt, da zum Beispiel $\boldsymbol{s}_0$ mit gleicher Wahrscheinlichkeit in das Symbol $\boldsymbol{s}_1$ bzw. $\boldsymbol{s}_2$ verfälscht wird:

$${\rm Pr}({ \cal E}) \le p_[[:Template:\rm UB]] = 2 \cdot {\rm Q} \left ( \frac{d_{ik}/2}{\sigma_n} \right ) = 2 \cdot {\rm Q}(2) \approx 2 \cdot 0.023 \hspace{0.1cm}\hspace{0.15cm}\underline {= 0.046} \hspace{0.05cm}. $$


(3)  Hier unterscheiden sich die Verfälschungswahrscheinlichkeiten für die einzelnen Symbole. Wurde $\boldsymbol{s}_0$ gesendet, so gilt mit $d_{01} = d_{02} = 2^{0.5}$ und $\sigma = 0.5$:

$$


(4) 


(5)