Difference between revisions of "Aufgaben:Exercise 3.6: State Transition Diagram"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm }} [[File:|right|]] ===Fragebogen=== <quiz display=simple…“)
 
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm
+
{{quiz-Header|Buchseite=Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm}}
  
 +
[[File:P_ID2648__KC_A_3_6.png|right|frame|Einfacher Rate–1/2–Faltungscodierer]]
 +
Eine Beschreibungsmöglichkeit für Faltungscodierer bietet das so genannte <i>Zustandsübergangsdiagramm</i>- Beinhaltet der Coder $m$ Speicherregister &#8658; Einflusslänge $\nu = m + 1$, so gibt es nach der aktuellen Speicherbelegung verschiedene Zustände $S_{\mu}$ mit $0 &#8804; \mu &#8804; 2^m \, &ndash;1$, wobei für den Index gilt:
 +
:$$\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2^{l-1} \cdot u_{i-l}
 +
\hspace{0.05cm}.$$
  
 +
Diese Art der Coderbeschreibung soll auf den oben skizzierten Faltungscodierer der Rate $R = 1/2$ angewendet werden.
  
 +
''Hinweis:''
 +
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm| Codebeschreibung mit Zustands&ndash; und Trellisdiagramm]].
  
 
}}
 
 
[[File:|right|]]
 
  
  
 
===Fragebogen===
 
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Multiple-Choice
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ correct
+ Richtig
+
- false
 
 
  
 
{Input-Box Frage
 
{Input-Box Frage
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$xyz \ = \ ${ 5.4 3% } $ab$
 
 
 
 
 
 
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;
'''2.'''
+
'''(2)'''&nbsp;
'''3.'''
+
'''(3)'''&nbsp;
'''4.'''
+
'''(4)'''&nbsp;
'''5.'''
+
'''(5)'''&nbsp;
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 12:23, 30 November 2017

Einfacher Rate–1/2–Faltungscodierer

Eine Beschreibungsmöglichkeit für Faltungscodierer bietet das so genannte Zustandsübergangsdiagramm- Beinhaltet der Coder $m$ Speicherregister ⇒ Einflusslänge $\nu = m + 1$, so gibt es nach der aktuellen Speicherbelegung verschiedene Zustände $S_{\mu}$ mit $0 ≤ \mu ≤ 2^m \, –1$, wobei für den Index gilt:

$$\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2^{l-1} \cdot u_{i-l} \hspace{0.05cm}.$$

Diese Art der Coderbeschreibung soll auf den oben skizzierten Faltungscodierer der Rate $R = 1/2$ angewendet werden.

Hinweis:


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)