Difference between revisions of "Aufgaben:Exercise 4.4Z: Supplement to Exercise 4.4"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Fr…“)
 
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder
+
{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder}}
  
 +
[[File:P_ID2994__KC_Z_4_4_v3.png |right|frame|Hamming–Gewicht und Wahrscheinlichkeiten ]]
 +
Der Informationstheoretiker [https://en.wikipedia.org/wiki/Robert_G._Gallager| Robert G. Gallager] hat sich bereits 1963 mit folgender Fragestellung beschäftigt:
 +
* Gegeben ist ein Zufallsvektor $\underline{x} = (x_1, \, x_2, \ ... \ , \, x_n)$ mit $n$ binären Elementen $x_i &#8712; \{0, \, 1\}$.
 +
* Bekannt sind alle Wahrscheinlichkeiten $p_i = {\rm Pr}(x_i = 1)$ und $q_i = {\rm Pr}(x_i = 0) = 1 - p_i$ mit Inex $i = 1, \ ... \ , \ n$.
 +
* Gesucht ist die Wahrscheinlichkeit, dass die Anzahl der Einsen in diesem Vektor geradzahlig ist.
 +
* Oder ausgedrückt mit dem [[Hamming&ndash;Gewicht]]: Wie groß ist die Wahrscheinlichkeit ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$?
  
  
 +
Die Grafik verdeutlicht die Aufgabenstellung für das Beispiel $n = 4$ sowie $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3$ und $p_4 = 0.6$.
 +
* Für die grün hinterlegte Zeile &nbsp;&#8658;&nbsp; $\underline{x} = (1, \, 0, \, 0, \, 1)$ gilt $w_{\rm H}(\underline{x}) = 2$ und ${\rm Pr}(\underline{x}) = p_1 \cdot q_2 \cdot q_3 \cdot p_4 = 0.0084$.
 +
* Blaue Schrift bedeutet ein geradzahliges Hamming&ndash;Gewicht. Rote Schrift steht für &bdquo;$w_{\rm H}(\underline{x})$ ist ungerade&rdquo;.
 +
* Die Wahrscheinlichkeite ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$ ist gleich der Summe der blauen Zahlen in der letzten Spalte. Die Summe der roten Zahlen ergibt ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ ungerade}] = 1 - {\rm Pr}[w_{\rm H}(\underline{x} {\rm \ ist \ gerade}]$.
  
  
 +
Gallager hat das Problem in analytischer Weise gelöst:
 +
:$$\hspace{0.2cm} {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \right ]
 +
\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$
 +
:$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}
 +
\right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$
  
 
 
}}
 
 
[[File:|right|]]
 
  
  
 
===Fragebogen===
 
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Multiple-Choice
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ correct
+ Richtig
+
- false
 
 
  
 
{Input-Box Frage
 
{Input-Box Frage
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$xyz \ = \ ${ 5.4 3% } $ab$
 
 
 
 
 
 
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;
'''2.'''
+
'''(2)'''&nbsp;
'''3.'''
+
'''(3)'''&nbsp;
'''4.'''
+
'''(4)'''&nbsp;
'''5.'''
+
'''(5)'''&nbsp;
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
 
  
  

Revision as of 00:02, 8 December 2017

Hamming–Gewicht und Wahrscheinlichkeiten

Der Informationstheoretiker Robert G. Gallager hat sich bereits 1963 mit folgender Fragestellung beschäftigt:

  • Gegeben ist ein Zufallsvektor $\underline{x} = (x_1, \, x_2, \ ... \ , \, x_n)$ mit $n$ binären Elementen $x_i ∈ \{0, \, 1\}$.
  • Bekannt sind alle Wahrscheinlichkeiten $p_i = {\rm Pr}(x_i = 1)$ und $q_i = {\rm Pr}(x_i = 0) = 1 - p_i$ mit Inex $i = 1, \ ... \ , \ n$.
  • Gesucht ist die Wahrscheinlichkeit, dass die Anzahl der Einsen in diesem Vektor geradzahlig ist.
  • Oder ausgedrückt mit dem Hamming–Gewicht: Wie groß ist die Wahrscheinlichkeit ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$?


Die Grafik verdeutlicht die Aufgabenstellung für das Beispiel $n = 4$ sowie $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3$ und $p_4 = 0.6$.

  • Für die grün hinterlegte Zeile  ⇒  $\underline{x} = (1, \, 0, \, 0, \, 1)$ gilt $w_{\rm H}(\underline{x}) = 2$ und ${\rm Pr}(\underline{x}) = p_1 \cdot q_2 \cdot q_3 \cdot p_4 = 0.0084$.
  • Blaue Schrift bedeutet ein geradzahliges Hamming–Gewicht. Rote Schrift steht für „$w_{\rm H}(\underline{x})$ ist ungerade”.
  • Die Wahrscheinlichkeite ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$ ist gleich der Summe der blauen Zahlen in der letzten Spalte. Die Summe der roten Zahlen ergibt ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ ungerade}] = 1 - {\rm Pr}[w_{\rm H}(\underline{x} {\rm \ ist \ gerade}]$.


Gallager hat das Problem in analytischer Weise gelöst:

$$\hspace{0.2cm} {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$
$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)