Difference between revisions of "Aufgaben:Exercise 1.17: About the Channel Coding Theorem"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Informationstheoretische Grenzen der Kanalcodierung }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {…“)
 
Line 5: Line 5:
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID2412__KC_A_1_16.png|right|frame|Kanalkapazität und Coderaten etablierter Systeme]]
  
 +
Die Grafik zeigt maximal zulässige Coderaten $R < C$ gemäß Shannons [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung#Kanalcodierungstheorem_und_Kanalkapazit.C3.A4t|Kanalcodierungstheorem:]]
 +
 +
*Die grüne Grenzkurve gibt die Kanalkapazität ''C'' für den AWGN–Kanal unter der Voraussetzung eines binären Eingangssignals („BPSK”) an.
 +
 +
*In [[Aufgaben:1.17Z_BPSK–Kanalkapazität|Aufgabe 1.17Z]] wird hierfür eine einfache Näherung angegeben. Mit der zweiten Abszisse
 +
 +
:$$x = \frac {1.6\,{\rm dB} + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}$$
 +
 +
ergibt sich näherungsweise:
 +
 +
:$$C \approx \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm exp}(- 0.4 \cdot x) \\ \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm}} x > 0, \\ \\{\rm f\ddot{u}r\hspace{0.15cm}} x < 0. \end{array}$$
 +
 +
*Gilt $R < C$, so kann ein Code gefunden werden, der bei unendlich langen Blöcken $(n → ∞)$ zur Fehlerwahrscheinlichkeit 0 führt. Wie dieser Code aussieht, ist durch das Kanalcodierungstheorem nicht festgelegt und spielt für diese Aufgabe auch keine Rolle.
 +
 +
In die Grafik eingezeichnet sind die Kenngrößen etablierter Codiersysteme. Die roten Punkte $\color{red}{\boldsymbol{\rm X}}$, $\color{red}{\boldsymbol{\rm Y}}$ und $\color{red}{\boldsymbol{\rm Z}}$ markieren drei Hamming–Codes unterschiedlicher Codelängen, nämlich mit $n = 7$, $n = 15$ und $n = 31$. Das Codiersystem $\color{red}{\boldsymbol{\rm W}}$ ist durch die Kenngrößen $R = 0.5$ und $10 \ · \ {\rm lg} E_{\rm B}/N_{0} = 3 {\rm dB}$ gekennzeichnet.
 +
 +
 +
''Hinweis:''
 +
 +
Die Aufgabe gehört zum Themengebiet von Kapitel  [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung|Informationstheoretische Grenzen der Kanalcodierung]]. Die informationstheoretische Grenze „Kanalkapazität” bezieht sich auf die Fehlerwahrscheinlichkeit 0. Die eingezeichneten Punkte realer Übertragungssysteme ergeben sich dagegen unter der Annahme BER $= 10^{–5}$.
  
 
===Fragebogen===
 
===Fragebogen===

Revision as of 15:03, 14 December 2017

Kanalkapazität und Coderaten etablierter Systeme

Die Grafik zeigt maximal zulässige Coderaten $R < C$ gemäß Shannons Kanalcodierungstheorem:

  • Die grüne Grenzkurve gibt die Kanalkapazität C für den AWGN–Kanal unter der Voraussetzung eines binären Eingangssignals („BPSK”) an.
  • In Aufgabe 1.17Z wird hierfür eine einfache Näherung angegeben. Mit der zweiten Abszisse
$$x = \frac {1.6\,{\rm dB} + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}$$

ergibt sich näherungsweise:

$$C \approx \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm exp}(- 0.4 \cdot x) \\ \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm}} x > 0, \\ \\{\rm f\ddot{u}r\hspace{0.15cm}} x < 0. \end{array}$$
  • Gilt $R < C$, so kann ein Code gefunden werden, der bei unendlich langen Blöcken $(n → ∞)$ zur Fehlerwahrscheinlichkeit 0 führt. Wie dieser Code aussieht, ist durch das Kanalcodierungstheorem nicht festgelegt und spielt für diese Aufgabe auch keine Rolle.

In die Grafik eingezeichnet sind die Kenngrößen etablierter Codiersysteme. Die roten Punkte $\color{red}{\boldsymbol{\rm X}}$, $\color{red}{\boldsymbol{\rm Y}}$ und $\color{red}{\boldsymbol{\rm Z}}$ markieren drei Hamming–Codes unterschiedlicher Codelängen, nämlich mit $n = 7$, $n = 15$ und $n = 31$. Das Codiersystem $\color{red}{\boldsymbol{\rm W}}$ ist durch die Kenngrößen $R = 0.5$ und $10 \ · \ {\rm lg} E_{\rm B}/N_{0} = 3 {\rm dB}$ gekennzeichnet.


Hinweis:

Die Aufgabe gehört zum Themengebiet von Kapitel Informationstheoretische Grenzen der Kanalcodierung. Die informationstheoretische Grenze „Kanalkapazität” bezieht sich auf die Fehlerwahrscheinlichkeit 0. Die eingezeichneten Punkte realer Übertragungssysteme ergeben sich dagegen unter der Annahme BER $= 10^{–5}$.

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.