Difference between revisions of "Aufgaben:Exercise 3.4: GMSK Modulation"

From LNTwww
Line 54: Line 54:
 
$f_{\rm G} \cdot T \ = \ $ { 0.45 3% }
 
$f_{\rm G} \cdot T \ = \ $ { 0.45 3% }
  
{Berechnen Sie den Frequenzimpuls $g(t)$ unter Verwendung der Funktion $\it \Phi (x)$. Wie groß ist der Impulswert $g(t = 0)$?
+
{Berechnen Sie den Frequenzimpuls $g(t)$ unter Verwendung der Funktion $\Phi (x)$. Wie groß ist der Impulswert $g(t = 0)$?
 
|type="{}"}
 
|type="{}"}
 
$g(t = 0) \ = \ $ { 0.737 3% }
 
$g(t = 0) \ = \ $ { 0.737 3% }
Line 75: Line 75:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''   
+
'''(1)'''  Wenn alle Amplitudenkoeffizienten $a_{\nu}$ gleich $+1$ sind, ist $q_{\rm R}(t) = 1$ eine Konstante. Der Gaußtiefpass hat deshalb keinen Einfluss und es ergibt sich $q_{\rm G}(t) = 1$. Die maximale Frequenz ist somit
'''(2)'''   
+
:$${\rm Max}[f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
'''(3)'''   
+
 
 +
Das Minimum der Augenblicksfrequenz
 +
:$${\rm Min}[f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
 +
ergibt sich, wenn alle Amplitudenkoeffizienten negativ sind. In diesem Fall ist $q_{\rm R}(t) = q_{\rm G}(t) = –1$.
 +
 
 +
'''(2)'''  Diejenige Frequenz, bei der die logarithmierte Leistungsübertragungsfunktion gegenüber $f = 0$ um $3 \ \rm dB$ kleiner ist, bezeichnet man als die 3dB–Grenzfrequenz. Dies lässt sich auch wie folgt ausdrücken:
 +
:$$\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
 +
 
 +
Insbesondere gilt für den Gaußtiefpass wegen $H(f = 0) = 1$:
 +
:$$H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}$$
 +
:$$\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 +
Die numerische Auswertung führt auf $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$. Aus $f_{\rm 3dB} \cdot T = 0.3$ folgt somit $f_{\rm G} \cdot T \underline{\approx 0.45}$.
 +
 
 +
'''(3)'''  Der Frequenzimpuls ergibt sich aus der Faltung von Rechteckfunktion $g_{\rm R}(t)$ und Impulsantwort $h_{\rm G}(t)$:
 +
:$$g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int \limits^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.$$
 +
 
 +
Mit der Substitution $u^{2 } = 8π \cdot f_{\rm G}^{2} \cdot \tau^{2}$ und der Funktion $\phi (x)$ kann hierfür auch geschrieben werden:
 +
:$$g(t) \ = \ \frac {1}{\sqrt{2 \pi}} \cdot \int \limits^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = $$
 +
:$$\hspace{0.65cm}\ = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.$$
 +
 
 +
Für die Zeit $t = 0$ gilt unter Berücksichtigung von $\phi (–x) = 1 – \phi (x)$ und $f_{\rm G} \cdot T = 0.45$:
 +
:$$g(t = 0) \ = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= $$
 +
:$$\hspace{1.45cm}\ = \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.$$
 +
 
 
'''(4)'''   
 
'''(4)'''   
 
'''(5)'''   
 
'''(5)'''   

Revision as of 16:43, 19 December 2017

GMSK-Modulation

Das bei GSM eingesetzte Modulationsverfahren ist bekanntlich $\color{red}{\rm Gaussian \ Minimum \ Shift \ Keying}$, abgekürtzt GMSK. Dabei handelt es sich um eine Art von FSK mit kontinuierlicher Phasenanpassung (CP–FSK), bei der

  • der Modulationsindex kleinstmöglich ist, um die Orthogonalitätsbedingung noch zu erfüllen ($h = 0.5$: „Minimum Shift Keying”),
  • ein Gaußtiefpass mit Impulsantwort $h_{\rm G}(t)$ vor dem FSK–Modulator eingebracht ist, um noch weiter Bandbreite einzusparen.


Das Bild verdeutlicht den Sachverhalt.

Die digitale Nachricht wird durch die Amplitudenkoeffizienten $a_{\nu} ∈ ±1$ repräsentiert, die einem Diracpuls beaufschlagt sind. Anzumerken ist, dass die eingezeichnete Folge für die Teilaufgabe (3) vorausgesetzt wird.

Der Rechteckimpuls sei dimensionslos, symmetrisch und besitze die GSM–Bitdauer $T_{\rm B} = T$:

$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$

Damit ergibt sich für das Rechtecksignal:

$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$

Der Gaußtiefpass ist durch Frequenzgang bzw. Impulsantwort gegeben:

$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$

wobei die systemtheoretische Grenzfrequenz $f_{\rm G}$ verwendet wird. In der GSM–Spezifikation wird aber die $3 \rm dB$–Grenzfrequenz mit $f_{\rm 3dB} = 0.3/T$ angegeben. Daraus kann $f_{\rm G}$ direkt berechnet werden.

Das Signal nach dem Gaußtiefpass lautet somit:

$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$

Hierbei wird $g(t)$ als Frequenzimpuls bezeichnet. Für diesen gilt:

$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$

Mit dem tiefpassgefilterten Signal $q_{\rm G}(t)$, der Trägerfrequenz $f_{\rm T}$ und dem Frequenzhub $\Delta f_{\rm A}$ kann somit für die Augenblicksfrequenz am Ausgang des FSK–Modulators geschrieben werden:

$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$

Verwenden Sie für Ihre Berechnungen die beispielhaften Werte $f_{\rm T} = 900 \ \rm MHz$ und $\Delta f_{\rm A} = 68 \ \rm kHz$.


Hinweis:

Die Aufgabe bezieht sich auf Funkschnittstelle. Verwenden Sie zur Lösung dieser Aufgabe das Gaußintegral:

$$\Phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$

Insbesondere gilt:

Tabelle der Gaußschen Fehlerfunktion

Fragebogen

1

In welchem Bereich kann die Augenblicksfrequenz $f_{\rm A}(t)$ schwanken? Welche Voraussetzungen müssen dafür erfüllt sein?

${\rm Max} \ [f_{\rm A}(t)] \ = \ $

2

Welche systemtheoretische Grenzfrequenz des Gaußtiefpasses ergibt sich aus der Forderung $f_{\rm 3dB} \cdot T = 0.3$?

$f_{\rm G} \cdot T \ = \ $

3

Berechnen Sie den Frequenzimpuls $g(t)$ unter Verwendung der Funktion $\Phi (x)$. Wie groß ist der Impulswert $g(t = 0)$?

$g(t = 0) \ = \ $

4

Welcher Wert ergibt sich für $q_{\rm G}(t = 3T)$, wenn alle Koeffizienten außer $a_{3} = –1$ weiterhin $a_{\nu \neq 3} = +1$ sind? Wie groß ist hier $f_{\rm A}(t = 3T)$?

$q_{\rm G}(t = 3T) \ = \ $

5

Berechnen Sie die Impulswerte $g(t = ±T)$.

$ g(t = ±T) \ = \ $

6

Wie groß ist der maximale Betrag von $q_{\rm G}(t)$ bei alternierenden Koeffizienten? Berücksichtigen Sie, dass $g(t ≥ 2 T) \approx 0$ ist.

${\rm Max} \ [|q_{\rm G}(t)|] \ = \ $


Musterlösung

(1)  Wenn alle Amplitudenkoeffizienten $a_{\nu}$ gleich $+1$ sind, ist $q_{\rm R}(t) = 1$ eine Konstante. Der Gaußtiefpass hat deshalb keinen Einfluss und es ergibt sich $q_{\rm G}(t) = 1$. Die maximale Frequenz ist somit

$${\rm Max}[f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$

Das Minimum der Augenblicksfrequenz

$${\rm Min}[f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$

ergibt sich, wenn alle Amplitudenkoeffizienten negativ sind. In diesem Fall ist $q_{\rm R}(t) = q_{\rm G}(t) = –1$.

(2)  Diejenige Frequenz, bei der die logarithmierte Leistungsübertragungsfunktion gegenüber $f = 0$ um $3 \ \rm dB$ kleiner ist, bezeichnet man als die 3dB–Grenzfrequenz. Dies lässt sich auch wie folgt ausdrücken:

$$\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$

Insbesondere gilt für den Gaußtiefpass wegen $H(f = 0) = 1$:

$$H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}$$
$$\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$

Die numerische Auswertung führt auf $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$. Aus $f_{\rm 3dB} \cdot T = 0.3$ folgt somit $f_{\rm G} \cdot T \underline{\approx 0.45}$.

(3)  Der Frequenzimpuls ergibt sich aus der Faltung von Rechteckfunktion $g_{\rm R}(t)$ und Impulsantwort $h_{\rm G}(t)$:

$$g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int \limits^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.$$

Mit der Substitution $u^{2 } = 8π \cdot f_{\rm G}^{2} \cdot \tau^{2}$ und der Funktion $\phi (x)$ kann hierfür auch geschrieben werden:

$$g(t) \ = \ \frac {1}{\sqrt{2 \pi}} \cdot \int \limits^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = $$
$$\hspace{0.65cm}\ = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.$$

Für die Zeit $t = 0$ gilt unter Berücksichtigung von $\phi (–x) = 1 – \phi (x)$ und $f_{\rm G} \cdot T = 0.45$:

$$g(t = 0) \ = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= $$
$$\hspace{1.45cm}\ = \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.$$

(4)  (5)  (6)  (7)