Difference between revisions of "Aufgaben:Exercise 1.16: Block Error Probability Bounds for AWGN"
Line 84: | Line 84: | ||
$(8, 4, 4)–{\rm Code}, \ \sigma = 1 \text{:} \hspace{0.2cm} p_{3} \ = \ $ { 1.913 3% } | $(8, 4, 4)–{\rm Code}, \ \sigma = 1 \text{:} \hspace{0.2cm} p_{3} \ = \ $ { 1.913 3% } | ||
$\sigma = 0.5 \text{:} \hspace{0.2cm} p_{3} \ = \ ${ 0.47 3% }$\ \cdot 10^{-2} $ | $\sigma = 0.5 \text{:} \hspace{0.2cm} p_{3} \ = \ ${ 0.47 3% }$\ \cdot 10^{-2} $ | ||
− | |||
− | |||
− | |||
</quiz> | </quiz> | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Richtig ist <u>Antwort 2</u>. Das Distanzspektrum | + | '''(1)''' Richtig ist <u>Antwort 2</u>. Das Distanzspektrum $\{W_i\}$ ist definiert für $i = 0, \ ... \ , \ n$: |
*$W_{1}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = 1$ auftritt. | *$W_{1}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = 1$ auftritt. | ||
*$W_{n}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = n$ auftritt. | *$W_{n}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = n$ auftritt. | ||
+ | |||
Damit lautet die ''Union Bound'': | Damit lautet die ''Union Bound'': | ||
Line 101: | Line 99: | ||
− | '''(2)''' Das Distanzspektrum des (8, 4, 4)–Codes wurde mit $W_{0} = 1 , W_{4} = 14, W_{8} = 1$ angegeben. Somit erhält man für $\boldsymbol{\sigma = 1}$: | + | '''(2)''' Das Distanzspektrum des $(8, 4, 4)$–Codes wurde mit $W_{0} = 1 , \ W_{4} = 14, \ W_{8} = 1$ angegeben. Somit erhält man für $\boldsymbol{\sigma = 1}$: |
bzw. für $\boldsymbol{\sigma = 0.5}$: | bzw. für $\boldsymbol{\sigma = 0.5}$: | ||
+ | |||
'''(3)''' Mit der Minimaldistanz $d_{\rm min} = 4$ erhält man: | '''(3)''' Mit der Minimaldistanz $d_{\rm min} = 4$ erhält man: | ||
Line 110: | Line 109: | ||
:$$\sigma = 0.5: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.444 \cdot 10^{-3}}\hspace{0.05cm}.$$ | :$$\sigma = 0.5: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.444 \cdot 10^{-3}}\hspace{0.05cm}.$$ | ||
− | '''(4)''' Richtig ist <u>Antwort 1</u>. Die ''Union Bound'' – hier mit $p_{1}$ bezeichnet – ist in jedem Fall eine obere Schranke für die Blockfehlerwahrscheinlichkeit. Für die Schranke $p_{2}$ (''Truncated Union Bound'') trifft das nicht immer zu. Beispielsweise erhält man beim (7, 4, 3)–Hamming–Code ⇒ $W_{3} = W_{4} = 7, W_{7} = 1$ und der Streuung $\sigma = 1: | + | |
+ | '''(4)''' Richtig ist <u>Antwort 1</u>. Die ''Union Bound'' – hier mit $p_{1}$ bezeichnet – ist in jedem Fall eine obere Schranke für die Blockfehlerwahrscheinlichkeit. Für die Schranke $p_{2}$ (''Truncated Union Bound'') trifft das nicht immer zu. Beispielsweise erhält man beim $(7, 4, 3)$–Hamming–Code ⇒ $W_{3} = W_{4} = 7, \ W_{7} = 1$ und der Streuung $\sigma = 1$: | ||
:$$p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},$$ | :$$p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},$$ | ||
Line 118: | Line 118: | ||
− | '''(5)''' Richtig sind die <u>Lösungsvorschläge 1 und 3</u>, wie die folgende Rechnung für den (8, 4, 4)–Code zeigt: | + | '''(5)''' Richtig sind die <u>Lösungsvorschläge 1 und 3</u>, wie die folgende Rechnung für den $(8, 4, 4)$–Code zeigt: |
− | *Es gilt Q(x) ≤ QCR(x) = exp( | + | *Es gilt $\rm Q}(x) ≤ ${\rm QCR}(x) = \exp{(-x^2/2)}$. Damit kann für die Union Bound |
:$$p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )$$ | :$$p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )$$ | ||
Line 132: | Line 132: | ||
:$$p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.$$ | :$$p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.$$ | ||
− | *Die Gewichtsfunktion des (8, 4, 4)–Codes lautet: | + | *Die Gewichtsfunktion des $(8, 4, 4)$–Codes lautet: |
:$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8$$ | :$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8$$ | ||
Line 138: | Line 138: | ||
:$$\Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.$$ | :$$\Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.$$ | ||
− | '''(6)''' Mit $ | + | |
+ | '''(6)''' Mit $\sigma = 1$ lautet der Bhattacharyya–Parameter $\beta = \exp{(–0.5)} = 0.6065$ und man erhält damit für die Bhattacharyya–Schranke: | ||
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018 \hspace{0.15cm}\underline{= 1.913}\hspace{0.05cm}.$$ | :$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018 \hspace{0.15cm}\underline{= 1.913}\hspace{0.05cm}.$$ | ||
− | Berücksichtigt man, dass $p_{3}$(eine Schranke für) eine Wahrscheinlichkeit angibt, so ist $p_{3} = 1.913$ nur eine triviale Schranke. Für $ | + | Berücksichtigt man, dass $p_{3}$(eine Schranke für) eine Wahrscheinlichkeit angibt, so ist $p_{3} = 1.913$ nur eine triviale Schranke. Für $\sigma = 0.5$ ergibt sich dagegen $\beta = \exp{(–2)} \approx 0.135.$ Dann gilt: |
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 4.7 \cdot 10^{-3}}\hspace{0.05cm}.$$ | :$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 4.7 \cdot 10^{-3}}\hspace{0.05cm}.$$ | ||
− | Ein Vergleich mit der Teilaufgabe 2) zeigt, dass im vorliegenden Beispiel die Bhattacharyya–Schranke $p_{3}$ um den Faktor $(4.7 · 10^{–3})/(0.44 · 10^{–3}) > 10$ oberhalb der ''Union Bound'' $p_{1}$ liegt. Der Grund für diese große Abweichung ist die Chernoff–Rubin–Schranke, die deutlich oberhalb der | + | Ein Vergleich mit der Teilaufgabe (2) zeigt, dass im vorliegenden Beispiel die Bhattacharyya–Schranke $p_{3}$ um den Faktor $(4.7 · 10^{–3})/(0.44 · 10^{–3}) > 10$ oberhalb der ''Union Bound'' $p_{1}$ liegt. Der Grund für diese große Abweichung ist die Chernoff–Rubin–Schranke, die deutlich oberhalb der {\rm Q}–Funktion liegt. In der [[Aufgaben:1.16Z_Schranken_für_Q(x)|Aufgabe 1.16Z]] wird die Abweichung zwischen ${\rm Q}_{\rm CR}$ und ${\rm Q}(x)$ auch quantitativ berechnet: |
:$${{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.$$ | :$${{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.$$ |
Revision as of 11:07, 21 December 2017
Wir gehen von der folgenden Konstellation aus:
- ein linearer Blockcode mit der Coderate $R = k/n$ und dem Distanzspektrum $\{W_i\}, \ i = 1, \ ... \ , n$,
- ein AWGN–Kanal, gekennzeichnet durch „$E_{\rm B}/N_{0}$” ⇒ umrechenbar in die Rauschleistung $\sigma^2$,
- ein Empfänger, basierend auf Soft Decision sowie dem Maximum–Likelihood–Kriterium.
Unter der für die gesamte Aufgabe gültigen Annahme, dass stets das Nullwort $\underline{x}_{1} = (0, 0, ... , 0)$ gesendet wird, gilt für die „paarweise Fehlerwahrscheinlichkeit” mit einem anderen Codewort $\underline{x}_{l} (l = 2, ... , 2^k):$
- $$ {\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = {\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm}.$$
Die Herleitung dieser Beziehung finden Sie in [Liv10]. In dieser Gleichung wurden verwendet:
- die komplementäre Gaußsche Fehlerfunktion ${\rm Q}(x)$,
- das Hamming–Gewicht $w_{\rm H}(\underline{x}_{l})$ des Codewortes $\underline{x}_{l}$,
- die AWGN–Rauschleistung $\sigma^2 = (2 · R · E_{\rm B}/N_{0})^{–1}.$
Damit lassen sich verschiedene Schranken für die Blockfehlerwahrscheinlichkeit angeben:
- die sogenannte Union Bound:
- $$p_1 = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm},$$
- die so genannte Truncated Union Bound (TUB):
- $$p_2 = W_{d_{\rm min}} \cdot {\rm Q}\left ( \sqrt{d_{\rm min}/\sigma^2} \right ) \hspace{0.05cm},$$
- $$p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm mit}\hspace{0.15cm} \beta = {\rm exp}\left [ - 1/(2\sigma^2) \right ] \hspace{0.05cm}.$$
In diesem Fall ist das Distanzspektrum $\{W_i\}$ durch die Gewichtsfunktion zu ersetzen:
- $$\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.$$
Beim Übergang von der Union Bound $p_{1}$ zur Schranke $p_{3}$ wird unter Anderem die Funktion ${\rm Q}(x)$ durch die Chernoff–Rubin–Schranke ${\rm Q}_{\rm CR}(x)$ ersetzt. Beide Funktionen sind in obigerer Grafik dargestellt (rote bzw. grüne Kurve).
In der Aufgabe 1.16Z wird der Zusammenhang zwischen diesen Funktionen numerisch ausgewertet und Bezug genommen zu den Schranken ${\rm Q}_{o}(x)$ und ${\rm Q}_{u}(x)$, die in obiger Grafik ebenfalls eingezeichnet sind.
Hinweise:
- Die Aufgabe gehört zum Kapitel Schranken für die Blockfehlerwahrscheinlichkeit
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Weiter verweisen wir auf folgendes Flash–Modul:
- Komplimentäre Gaußsche Fehlerfunktion (Dateigröße: 235 kB)
Fragebogen
Musterlösung
- $W_{1}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = 1$ auftritt.
- $W_{n}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = n$ auftritt.
Damit lautet die Union Bound:
- $$p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.$$
(2) Das Distanzspektrum des $(8, 4, 4)$–Codes wurde mit $W_{0} = 1 , \ W_{4} = 14, \ W_{8} = 1$ angegeben. Somit erhält man für $\boldsymbol{\sigma = 1}$:
bzw. für $\boldsymbol{\sigma = 0.5}$:
(3) Mit der Minimaldistanz $d_{\rm min} = 4$ erhält man:
- $$\sigma = 1.0: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 0.3192}\hspace{0.05cm},$$
- $$\sigma = 0.5: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.444 \cdot 10^{-3}}\hspace{0.05cm}.$$
(4) Richtig ist Antwort 1. Die Union Bound – hier mit $p_{1}$ bezeichnet – ist in jedem Fall eine obere Schranke für die Blockfehlerwahrscheinlichkeit. Für die Schranke $p_{2}$ (Truncated Union Bound) trifft das nicht immer zu. Beispielsweise erhält man beim $(7, 4, 3)$–Hamming–Code ⇒ $W_{3} = W_{4} = 7, \ W_{7} = 1$ und der Streuung $\sigma = 1$:
- $$p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},$$
- $$p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.$$
Die tatsächliche Blockfehlerwahrscheinlichkeit wird wahrscheinlich zwischen $p_{2} = 0.293$ und $p_{1} = 0.455$ liegen (wurde nicht nachgeprüft). Das heißt: $p_{2}$ ist keine obere Schranke.
(5) Richtig sind die Lösungsvorschläge 1 und 3, wie die folgende Rechnung für den $(8, 4, 4)$–Code zeigt:
- Es gilt $\rm Q}(x) ≤ ${\rm QCR}(x) = \exp{(-x^2/2)}$. Damit kann für die Union Bound :'"`UNIQ-MathJax35-QINU`"' eine weitere obere Schranke angegeben werden: :'"`UNIQ-MathJax36-QINU`"' *Mit $\beta = {\rm exp}[–1/(2\sigma^2)]$ kann hierfür auch geschrieben werden (das vorgegebene $\beta = 1/\sigma$ ist also falsch): :'"`UNIQ-MathJax37-QINU`"' *Die Gewichtsfunktion des $(8, 4, 4)$–Codes lautet: :'"`UNIQ-MathJax38-QINU`"' :'"`UNIQ-MathJax39-QINU`"' '''(6)''' Mit $\sigma = 1$ lautet der Bhattacharyya–Parameter $\beta = \exp{(–0.5)} = 0.6065$ und man erhält damit für die Bhattacharyya–Schranke: :'"`UNIQ-MathJax40-QINU`"' Berücksichtigt man, dass $p_{3}$(eine Schranke für) eine Wahrscheinlichkeit angibt, so ist $p_{3} = 1.913$ nur eine triviale Schranke. Für $\sigma = 0.5$ ergibt sich dagegen $\beta = \exp{(–2)} \approx 0.135.$ Dann gilt: :'"`UNIQ-MathJax41-QINU`"' Ein Vergleich mit der Teilaufgabe (2) zeigt, dass im vorliegenden Beispiel die Bhattacharyya–Schranke $p_{3}$ um den Faktor $(4.7 · 10^{–3})/(0.44 · 10^{–3}) > 10$ oberhalb der ''Union Bound'' $p_{1}$ liegt. Der Grund für diese große Abweichung ist die Chernoff–Rubin–Schranke, die deutlich oberhalb der {\rm Q}–Funktion liegt. In der [[Aufgaben:1.16Z_Schranken_für_Q(x)|Aufgabe 1.16Z]] wird die Abweichung zwischen ${\rm Q}_{\rm CR}$ und ${\rm Q}(x)$ auch quantitativ berechnet:
- $${{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.$$