Difference between revisions of "Aufgaben:Exercise 1.2: Coaxial Cable"
m (Guenter verschob die Seite 1.2 Koaxialkabel nach Aufgabe 1.2: Koaxialkabel) |
|
(No difference)
|
Revision as of 14:10, 3 January 2018
A1.2 Koaxialkabel
Der Frequenzgang eines Normalkoaxialkabels der Länge $l$ (mit $2.6 \ \text{mm}$ Durchmesser des Innenleiters und $9.5 \ \text{mm}$ Außendurchmesser) lautet für Frequenzen $f > 0$: $$H(f) = {\rm e}^{-\alpha_{0\hspace{0.02cm}} \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{-(\alpha_1 + {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \beta_1)\hspace{0.05cm} \cdot \hspace{0.05cm} f \cdot \hspace{0.05cm} l}\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm e}^{-(\alpha_2 + {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\beta_2) \hspace{0.05cm} \cdot \hspace{0.05cm} \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm} l}.$$
- Der erste, von den Ohmschen Verlusten herrührende Term in dieser Gleichung wird durch die so genannte kilometrische Dämpfung $α_0 = 0.00162\, \text{Np/km}$ beschrieben.
- Der frequenzproportionale Dämpfungsanteil ⇒ $α_1 · f · l$ mit $α_1 = 0.000435 \,\text{Np/(km · MHz)}$ geht auf die Querverluste zurück. Dieser macht sich erst bei sehr hohen Frequenzen bemerkbar und wird im Folgenden vernachlässigt.
- Auch die frequenzproportionale Phase $β_1 · f · l$ mit $β_1 = 21.78 \,\text{rad/(km · MHz)}$ wird außer Acht gelassen werden, da diese nur eine für alle Frequenzen gleiche Laufzeit zur Folge hat.
Der Koaxialkabel–Frequenzgang wird deshalb für Frequenzen zwischen $200 \ \text{kHz}$ und $400 \ \text{MHz}$ im Wesentlichen durch den Einfluss
- der Dämpfungskonstanten $α_2 = 0.2722 \,\text{Np/(km · MHz}^{0.5})$, und
- der Phasenkonstanten $β_2 = 0.2722 \,\text{rad/(km · MHz}^{0.5})$
bestimmt, die auf den so genannten Skineffekt zurückzuführen sind. Für positive Frequenzen gilt: $$H(f) = K \cdot {\rm e}^{-(\alpha_2 + {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \beta_2)\hspace{0.05cm} \cdot \hspace{0.05cm} \sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm} l}.$$ Aufgrund der gleichen Zahlenwerte von $α_2$ und $β_2$ kann hierfür auch geschrieben werden: $$H(f) = K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot \hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} f/f_0} },$$ wobei der Parameter $f_0$ die beiden Konstanten $α_2$ und $β_2$ sowie die Kabellänge $l$ gleichermaßen berücksichtigt.
Hinweise:
- Die Aufgabe gehört zum Kapitel Systembeschreibung im Frequenzbereich.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(2) Mit $a_0 = α_0 · l$ müsste folgende Gleichung erfüllt sein:
$${\rm e}^{\rm -a_0 } \ge 0.97
\hspace{0.2cm} \Rightarrow \hspace{0.2cm} {\rm a_0 } < \ln \frac{1}{0.97
} \approx 0.0305\,{\rm Np}.$$
Damit erhält man für die maximale Länge $l_{\rm max} = 0.0305 \ \text{Np}/0.00162 \ \text{Np/km} \rm \underline{\: ≈ \: 18.8 \: km}$.
(3) Wegen $β_2 = α_2$ und der angegebenen Beziehung $\rm 1 + j = (2j)^{0.5}$ kann für den Frequenzgang auch geschrieben werden:
$$H(f) = K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot
\hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot
\hspace{0.05cm} f \hspace{0.05cm} \cdot \hspace{0.05cm} {\alpha_2}^2
\hspace{0.05cm} \cdot \hspace{0.05cm} l^2} }= K \cdot {\rm e}^{-
\sqrt{2\hspace{0.05cm} \cdot
\hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} f/f_0} }.$$
Durch Koeffizientenvergleich mit der vorne angegebenen Gleichung erhält man:
$${1}/{f_0} = \alpha_2^2 \hspace{0.05cm} \cdot \hspace{0.05cm} l^2 = ( \frac { {\rm 0.272} }{\rm km \hspace{0.05cm} \cdot \hspace{0.05cm} \sqrt{MHz} })^2 \cdot ({\rm 5 \hspace{0.05cm} km})^2 = \frac{1.855}{ {\rm MHz} }\hspace{0.2cm} \Rightarrow \hspace{0.2cm} f_0 \hspace{0.15cm}\rm \underline{= 0.540 \: MHz}.$$
(4) Für den Frequenzgang gilt:
$$\begin{align*}H(f) & = K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot
\hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot
\hspace{0.05cm} f/f_0} } = K \cdot {\rm e}^{- \sqrt{ f/f_0} }
\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} \cdot
\hspace{0.05cm}\sqrt{ f/f_0} } \hspace{0.05 cm} \Rightarrow \hspace{0.05 cm} |H(f)|^2 = K^2 \cdot
{\rm e}^{- 2\hspace{0.05cm} \cdot
\hspace{0.05cm}\sqrt{ f/f_0} }.\end{align*}$$
Für $f = f_0$ erhält man hierfür $\rm e^{–2}$ ≈ 0.135. Daraus folgt weiter:
$$P_y = P_x \cdot |H(f = f_0)|^2 \hspace{0.15cm}\underline{\approx135\hspace{0.05cm}{\rm mW}}.$$
(5) Mit der höheren Frequenz $f_x = 10\,\text{MHz}$ ist die Ausgangsleistung gegenüber $f_x = 0.54\,\text{MHz}$ signifikant kleiner:
$$P_y = P_x \cdot {\rm e}^{- 2\hspace{0.05cm} \cdot
\hspace{0.05cm}\sqrt{ 10/0.54} }\approx P_x \cdot {\rm e}^{- 8.6 } \hspace{0.15cm}\underline{\approx 0.184 \hspace{0.1cm}{\rm mW}}.$$