Difference between revisions of "Aufgaben:Exercise 2.08: Generator Polynomials for Reed-Solomon"
m (Guenter verschob die Seite Aufgabe 2.08: RS–Generatorpolynome nach Aufgabe 2.08: Generatorpolynome für Reed-Solomon) |
|||
Line 2: | Line 2: | ||
[[File:P_ID2525__KC_A_2_8.png|right|frame|Vier Generatormatrizen, drei davon beschreiben Reed–Solomon–Codes]] | [[File:P_ID2525__KC_A_2_8.png|right|frame|Vier Generatormatrizen, drei davon beschreiben Reed–Solomon–Codes]] | ||
− | In der [[Aufgaben: | + | In der [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8|Aufgabe 2.7]] sollten Sie die Codeworte des $\rm RSC \, (7, \, 3, \, 5)_8$ über ein Polynom ermitteln. Man kann aber das Codewort $\underline{c}$ auch aus dem Informationswort $\underline{u}$ und der Generatormatrix $\mathbf{G}$ gemäß der folgenden Gleichung bestimmen: |
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}} | :$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Zwei der vorgegebenen Generatormatrizen beschreiben den $\rm RSC \, (7, \, 3, \, 5)_8$. In der Teilaufgabe (1) ist explizit gefragt, welche. Eine weitere Generatormatrix gehört zum $\rm RSC \, (7, \, 5, \, 3)_8$, der in der Teilaufgabe (3) betrachtet wird. | + | *Zwei der vorgegebenen Generatormatrizen beschreiben den $\rm RSC \, (7, \, 3, \, 5)_8$. In der Teilaufgabe (1) ist explizit gefragt, welche. |
+ | *Eine weitere Generatormatrix gehört zum $\rm RSC \, (7, \, 5, \, 3)_8$, der in der Teilaufgabe (3) betrachtet wird. | ||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
* Die Aufgabe gehört zum Themengebiet des Kapitels [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]]. | * Die Aufgabe gehört zum Themengebiet des Kapitels [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]]. | ||
− | * Wichtige Informationen zu den Reed–Solomon–Codes finden Sie auch in der | + | * Wichtige Informationen zu den Reed–Solomon–Codes finden Sie auch in der [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8| Aufgabe 2.7]]. |
Line 20: | Line 24: | ||
{Welche der Generatorpolynome beschreiben den $\rm RSC \, (7, \, 3, \, 5)_8$? | {Welche der Generatorpolynome beschreiben den $\rm RSC \, (7, \, 3, \, 5)_8$? | ||
|type="[]"} | |type="[]"} | ||
− | - $\mathbf{G}_{\rm A}$, | + | - $Die Matrix \mathbf{G}_{\rm A}$, |
− | + $\mathbf{G}_{\rm B}$, | + | + $die Matrix \mathbf{G}_{\rm B}$, |
− | + $\mathbf{G}_{\rm C}$, | + | + $die Matrix\mathbf{G}_{\rm C}$, |
− | - $\mathbf{G}_{\rm D}$. | + | - $die Matrix\mathbf{G}_{\rm D}$. |
{Die Informationsfolge beginnt mit $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$. Bestimmen Sie das erste Codewort für den $\rm RSC \, (7, \, 3, \, 5)_8$. | {Die Informationsfolge beginnt mit $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$. Bestimmen Sie das erste Codewort für den $\rm RSC \, (7, \, 3, \, 5)_8$. |
Revision as of 17:09, 9 January 2018
In der Aufgabe 2.7 sollten Sie die Codeworte des $\rm RSC \, (7, \, 3, \, 5)_8$ über ein Polynom ermitteln. Man kann aber das Codewort $\underline{c}$ auch aus dem Informationswort $\underline{u}$ und der Generatormatrix $\mathbf{G}$ gemäß der folgenden Gleichung bestimmen:
- $$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$
- Zwei der vorgegebenen Generatormatrizen beschreiben den $\rm RSC \, (7, \, 3, \, 5)_8$. In der Teilaufgabe (1) ist explizit gefragt, welche.
- Eine weitere Generatormatrix gehört zum $\rm RSC \, (7, \, 5, \, 3)_8$, der in der Teilaufgabe (3) betrachtet wird.
Hinweise:
- Die Aufgabe gehört zum Themengebiet des Kapitels Definition und Eigenschaften von Reed–Solomon–Codes.
- Wichtige Informationen zu den Reed–Solomon–Codes finden Sie auch in der Aufgabe 2.7.
Fragebogen
Musterlösung
(2) Beim $\rm RSC \, (7, \, 3, \, 5)_8$ werden in jedem Codierschritt $k = 3$ Informationssymbole verarbeitet, im Codierschritt 1 die Symbole $\alpha^4, \ 1$ und $\alpha^3$. Mit der Generatormatrix $\mathbf{G}_{\rm C}$ gilt somit:
- $$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5} \end{pmatrix}\hspace{0.05cm}. $$
- $$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 =$$
- $$\hspace{0.475cm} = \ \hspace{-0.15cm} (110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
- $$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2}= $$
- $$\hspace{0.475cm} = \ \hspace{-0.15cm} (110) + (010) + (110) = (011) = \alpha^{3} \hspace{0.05cm},$$
- $$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{2} + \alpha^{3}\cdot \alpha^{4}=$$
- $$\hspace{0.475cm} = \ \hspace{-0.15cm} (110) + (100) + (001) = (011) = \alpha^{3} \hspace{0.05cm},$$
- $$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{3} + \alpha^{3}\cdot \alpha^{6}=$$
- $$\hspace{0.475cm} = \ \hspace{-0.15cm} (110) + (011) + (100) = (001) = 1 \hspace{0.05cm},$$
- $$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{4} + \alpha^{3}\cdot \alpha^{1} = \alpha^{4} \hspace{0.05cm},$$
- $$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{5} + \alpha^{3}\cdot \alpha^{3}=$$
- $$\hspace{0.475cm} = \ \hspace{-0.15cm} (110) + (111) + (101) = (100) = \alpha^{2} \hspace{0.05cm},$$
- $$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{6} + \alpha^{3}\cdot \alpha^{5}=$$
- $$\hspace{0.475cm} = \ \hspace{-0.15cm} (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
Man erhält das genau gleiche Ergebnis wie in der Teilaufgabe (4) von Aufgabe A2.7. Richtig sind die Lösungsvorschläge 1 und 2. Es gilt nicht $c_6 = 0$, sondern $c_6 = 1$.
(3) Beim $\rm RSC \, (7, \, 5, \, 3)_8$ ist nun das Informationswort $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$ zu berücksichtigen. Mit der Generatormatrix $\mathbf{G}_{\rm D}$ erhält man somit:
- $$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 & 0 & \alpha^6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^5 & \alpha^{1} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^1 & \alpha^5 & \alpha^2 & \alpha^{6} & \alpha^{3} \end{pmatrix}\hspace{0.05cm}. $$
Daraus folgt:
- $$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 + 0 \cdot 1 + \alpha^{6}\cdot 1=$$
- $$\hspace{0.475cm} = \ \hspace{-0.15cm} (110) + (001) + (011) + (000) + (101) = (001) = 1 \hspace{0.05cm},$$
- $$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} + \alpha^{6}\cdot \alpha^{4}= \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
Hierbei ist berücksichtigt, dass der Klammerausdruck $[ \ ... \ ]$ genau dem Ergebnis $c_1$ der Teilaufgabe (2) entspricht. Entsprechendes wird bei den folgenden Berechnungen ebenfalls berücksichtigt:
- $$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}= \left [ \alpha^{3} \right ] + \alpha^{7} = (011) + (001) = (010) = \alpha^{1} \hspace{0.05cm},$$
- $$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{5}= \left [ 1 \right ] + \alpha^{4}= (001) + (110) = (111) = \alpha^{5} \hspace{0.05cm},$$
- $$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4} \right ] + \alpha^{6}\cdot \alpha^{2}= \left [ \alpha^{4} \right ] + \alpha^{1} = (110) + (010) = (100) = \alpha^{2} \hspace{0.05cm},$$
- $$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{2} \right ] + \alpha^{6}\cdot \alpha^{6}= \left [ \alpha^{2} \right ] + \alpha^{5} = (100) + (111) = (011) = \alpha^{3} \hspace{0.05cm},$$
- $$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{3}= \left [ 1 \right ] + \alpha^{2} = (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
Das heißt: Alle Lösungsvorschläge sind richtig.