Difference between revisions of "Applets:Lineare Verzerrungen periodischer Signale"

From LNTwww
Line 122: Line 122:
  
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Bestmögliche Anpassung:} \hspace{0.2cm}k_{\rm M}\hspace{0.15cm}\underline{ = 2.06} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}P_{\rm D} =  0.136 \ {\rm V^2}\hspace{0.2cm}\rho_{\rm D}  \approx 3.7$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Dämpfungs- und  Phasenverzerrungen. Bestmögliche Anpassung:} \hspace{0.2cm}k_{\rm M}\hspace{0.15cm}\underline{ = 2.06} \text{, } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}P_{\rm D} =  0.136 \ {\rm V^2},\hspace{0.1cm}\rho_{\rm D}  \approx 3.7$.
  
$\hspace{1.85cm}\text{Sowohl Dämpfungs- als auch Phasenverzerrungen.} \hspace{0.3cm}\text{Fasst man Quellen- und Kanalparameter zusammen, so gilt:}\hspace{0.2cm}y(t) = 0.4 \ {\rm V} \cdot \sin\left(2\pi\cdot f_1\cdot t) - 0.12 \ {\rm V} \cdot \sin\left(2\pi\cdot 3f_1\cdot t) \approx 0.533 \ {\rm V} \cdot \sin^3\left(2\pi\cdot f_1\cdot t)}$.
+
$\hspace{1.85cm}\text{Zusammenfassen von }\varphi \text{- und } \tau\text{-Parameter: } y(t) = 0.4 \ {\rm V} \cdot \sin\ (2\pif_1 t) - 0.12 \ {\rm V} \cdot \sin\ (2\pi \cdot 3f_1\cdot t) \approx 0.52 \ {\rm V} \cdot \sin^3(2\pi f_1 t)$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(6)'''   Wählen Sie die letzte Einstellung    ⇒   „Recall Parameters” und ändern Sie $f_2' = 0.6$. Speichern Sie diese Einstellung mit „Store Parameters”:}}
+
'''(9)'''   Für das Sendesignal $x(t)$ gelte nun $A_1 = A_2 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ f_2 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ, \ \varphi_2 = 0^\circ$ und der Kanal ein Tiefpass erster Ordnung  $(f_0 = 2\ {\rm kHz})$. Wählen Sie die letzte Einstellung    ⇒   „Recall Parameters” und ändern Sie $f_2' = 0.6$. Speichern Sie diese Einstellung mit „Store Parameters”:}}
  
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 5.0 \ \rm ms$   wegen   ${\rm ggt}(0.2,0.6) = 0.2$.
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 5.0 \ \rm ms$   wegen   ${\rm ggt}(0.2,0.6) = 0.2$.
Line 135: Line 135:
  
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist $x_{\rm max} =x(t_* + i \cdot T_0) = 1.39 \ \rm V$ mit $t_* = 0.3 \ \rm ms$ und $T_0 = 5.0 \ \rm ms$
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist $x_{\rm max} =x(t_* + i \cdot T_0) = 1.39 \ \rm V$ mit $t_* = 0.3 \ \rm ms$ und $T_0 = 5.0 \ \rm ms$
{{BlaueBox|TEXT= 
 
'''(8)'''   Wählen Sie die letzte Einstellung    ⇒   „Recall  Parameters” und ändern Sie $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen:}}
 
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun mit $x_{\rm max}  =x(t_* + i \cdot T_0) = 1.5 \ \rm V$, also gleich $A_1 + A_2$   ⇒   $t_* = 0$, $T_0 = 5.0 \ \rm ms$.
 
 
{{BlaueBox|TEXT= 
 
'''(9)'''   Wählen Sie die vorletzte Einstellung    ⇒   „Recall  Parameters” und ändern Sie $\varphi_1 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen:}}
 
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun mit $x_{\rm max} = 1.08 \ \rm V$, also ungleich $A_1 + A_2$  ⇒   $t_* = 0.6 \ \rm ms$, $T_0 = 5.0 \ \rm ms$.
 
  
  
Line 187: Line 180:
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
  
{{LntAppletLink|periode|Applet in neuem Tab öffnen}}  
+
{{LntAppletLink|verzerrungen}}
  
 
[[Category:Applets|^Periodendauer^]]
 
[[Category:Applets|^Periodendauer^]]

Revision as of 16:17, 11 January 2018

Open Applet in a new tab

Programmbeschreibung


Dieses Applet veranschaulicht die Auswirkungen von linearen Verzerrungen (Dämpfungsverzerrungen und Phasenverzerrungen) anhand

  • des Eingangssignals   $x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right)\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\text{Leistung }P_x, $
  • des Ausgangssignals   $y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2)\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\text{Leistung }P_y,$
  • des Matching–Ausgangssignals   $z(t) = k_{\rm M} \cdot y(t-\tau_{\rm M}) + \alpha_2 \cdot x_2(t-\tau_2)\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\text{Leistung }P_z,$ und
  • des Differenzsignals   $\varepsilon(t) = z(t) - x(t)\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\text{Leistung }P_\varepsilon.$


Die Amplituden– und Phasenanpassung des Ausgangssignals $y(t)$   ⇒   „Matching” erlaubt die Unterscheidung

  • zwischen einer Dämpfungsverzerrung und einer frequenzunabhängigen Dämpfung, sowie
  • zwischen einer Phasenverzerrung und einer reinen Laufzeit.


Als Maß für die Stärke der linearen Verzerrungen wird die Verzerrungsleistung (englisch: Distortion Power) $P_{\rm D}$ ausgegeben.

Theoretischer Hintergrund


Lineare Verzerrungen treten üblicherweise in Form von

  • Dämpfungsverzerrungen $\alpha_i$ und
  • Phasenverzerrungen $\tau_i$ auf.

Ist $\alpha_1 \ne \alpha_2$ und $\tau_1 = \tau_2$, so liegen ausschließlich Dämpfungsverzerrungen vor. Dagegen führt $\alpha_1 = \alpha_2$ und $\tau_1 \ne \tau_2$ zu reinen Phasenverzerrungen.
Ein Signal $y(t)$ ist gegenüber $x(t)$ unverzerrt, wenn $\alpha_1 = \alpha_2$ und $\tau_1 und \tau_2$ gilt.


$\text{Berechnungsvorschrift:}$  Setzt sich das periodisches Signal $x(t)$ wie in diesem Applet aus zwei Anteilen $x_1(t)$ und $x_2(t)$ zusammen, dann gilt mit $A_1 \ne 0$, $f_1 \ne 0$, $A_2 \ne 0$, $f_2 \ne 0$ für Grundfrequenz und Periodendauer:

$$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0,$$

wobei „ggT” den größten gemeinsamen Teiler bezeichnet.


$\text{Beispiele:}$   Im Folgenden bezeichnen $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierten Signalfrequenzen:

(a)   $f_1' = 1.0$,   $f_2' = 3.0$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$   ⇒   $T_0 = 1.0\ \rm ms$;

(b)   $f_1' = 1.0$,   $f_2' = 3.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(c)   $f_1' = 1.0$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(d)   $f_1' = 0.9$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$   ⇒   $T_0 = 10.0 \ \rm ms$;

(e)   $f_2' = \sqrt{2} \cdot f_1' $   ⇒   $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$   ⇒   $T_0 \to \infty$  ⇒   Das Signal $x(t)$ ist nicht periodisch.


$\text{Anmerkung:}$  Die Periodendauer könnte auch als kleinstes gemeinsame Vielfache (kgV) entsprechend $T_0 = {\rm kgV}(T_1, \ T_2)$ ermittelt werden:

(c)   $T_1 = 1.0\ \rm ms$,   $T_2 = 0.4\ \rm kHz$   ⇒   $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$

Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel

(a)   $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.

Vorschlag für die Versuchsdurchführung


BlaBla

(1)   Für das Sendesignal $x(t)$ gelte $A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 0^\circ$.

Wie groß ist die Periodendauer $T_0$? Welche Leistung $P_x$ weist dieses Signal auf? Wo können Sie diesen Wert im Programm ablesen?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}T_0 = \big [\hspace{-0.1cm}\text{ größter gemeinsamer Teiler }(0.5 \ {\rm kHz}, \ 1.5 \ {\rm kHz})\big ]^{-1} = 2.0 \ {\rm ms};$

$\hspace{1.85cm} P_x = A_1^2/2 + A_2^2/2 = 0.5 \ {\rm V^2} = P_\varepsilon\text{, wenn }k_{\rm M} = 0 \ \Rightarrow \ z(t) \equiv 0$.

(2)   Variieren Sie bei sonst gleicher Einstellung wie unter (1) die Phase $\varphi_2$ im gesamten möglichen Bereich $\pm 180^\circ$. Wie ändern sich $T_0$ und $P_x$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen:}\hspace{0.2cm} T_0 = 2.0 \ {\rm ms}; \hspace{0.2cm} P_x = 0.5 \ {\rm V^2}$.

(3)   Variieren Sie bei sonst gleicher Einstellung wie unter (1) die Frequenz $f_2$ im Bereich $0 \le f_2 \le 5\ {\rm kHz}$. Wie ändert sich die Signalleistung $P_x$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen, falls }f_2 \ne 0\text{ oder } f_2 \ne f_1\text{:}\hspace{0.3cm} P_x = 0.5 \ {\rm V^2}\text{.} \hspace{0.2cm} T_0 \text{ ändert sich, falls }f_2\text{ kein Vielfaches von }f_1$.

$\hspace{1.85cm}\text{Falls }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2 = 0.68 \ {\rm V^2}$. $\hspace{3cm}\text{Allgemeine Formel noch überprüfen}$

$\hspace{1.85cm}\text{Falls }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1\cos(\varphi_1) + A_2\cos(\varphi_2)]^2/2 + [A_1\sin(\varphi_1) + A_2\sin(\varphi_2)]^2/2 \text{.}\hspace{0.2cm} \varphi_1 = 90^\circ, \ \varphi_2 = 0^\circ\text{:}\hspace{0.3cm} P_x = 0.5 \ {\rm V^2}\text{.} $

(4)   Ausgehend vom bisherigen Sendesignal $x(t)$ gelte für den Kanal: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}$. Zudem sei $k_{\rm M} = 1 \text{ und } \tau_{\rm M} = 0$ .

Gibt es lineare Verzerrungen? Wie groß ist die Empfangsleistung $P_y$ und die Leistung $P_\varepsilon$ des Differenzsignals $\varepsilon(t) = z(t) - x(t)$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} y(t) = 0.5 \cdot x(t- 1\ {\rm ms})\text{ ist unverzerrt, nur gedämpft und verzögert.}$

$\hspace{1.85cm}\text{Empfangsleistung:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2 = 0.125 \ {\rm V^2}\text{. }\hspace{0.2cm} P_\varepsilon \text{ ist deutlich größer:} \hspace{0.2cm} P_\varepsilon = 0.625 \ {\rm V^2}.$

(5)   Variieren Sie bei sonst gleicher Einstellung wie unter (4) die Matchingparameter $k_{\rm M} \text{ und } \tau_{\rm M}$. Wie groß ist die Verzerrungsleistung $P_{\rm D}$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ ist gleich der Leistung }P_\varepsilon \text{ des Differenzsignals bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M} = 2 \text{ und } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}$

$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D} = P_\varepsilon = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{weder Dämpfungs- noch Phasenverzerrungen.}$

(6)   Für den Kanal gelte nun $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}$. Wie groß sind nun die Verzerrungsleistung $P_{\rm D}$ und das $\rm SDR$ $\rho_{\rm D}$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M}\hspace{0.15cm}\underline{ = 2.24} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{ = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}P_{\rm D} = 0.059 \ {\rm V^2}$.

$\hspace{1.85cm}\text{Nur Dämpfungsverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \rho_{\rm D} = P_x/P_\varepsilon \approx 8.5$.

(7)   Für den Kanal gelte nun $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \ \tau_2 = 0.5\ {\rm ms}$. Wie groß sind nun $P_{\rm D}$ und $\rho_{\rm D}$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M}\hspace{0.15cm}\underline{ = 1.82} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}P_{\rm D} = 0.072 \ {\rm V^2}$.

$\hspace{1.85cm}\text{Nur Phasenverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \rho_{\rm D} = P_x/P_\varepsilon \approx 7$.

(8)   Für den Kanal gelte nun $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \ \tau_2 = 0.5\ {\rm ms}$. Wie groß sind nun $P_{\rm D}$ und $\rho_{\rm D}$? Wie lässt sich $y(t)$ annähern?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Dämpfungs- und Phasenverzerrungen. Bestmögliche Anpassung:} \hspace{0.2cm}k_{\rm M}\hspace{0.15cm}\underline{ = 2.06} \text{, } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}P_{\rm D} = 0.136 \ {\rm V^2},\hspace{0.1cm}\rho_{\rm D} \approx 3.7$.

$\hspace{1.85cm}\text{Zusammenfassen von }\varphi \text{- und } \tau\text{-Parameter: } y(t) = 0.4 \ {\rm V} \cdot \sin\ (2\pif_1 t) - 0.12 \ {\rm V} \cdot \sin\ (2\pi \cdot 3f_1\cdot t) \approx 0.52 \ {\rm V} \cdot \sin^3(2\pi f_1 t)$.

(9)   Für das Sendesignal $x(t)$ gelte nun $A_1 = A_2 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ f_2 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ, \ \varphi_2 = 0^\circ$ und der Kanal ein Tiefpass erster Ordnung $(f_0 = 2\ {\rm kHz})$. Wählen Sie die letzte Einstellung   ⇒   „Recall Parameters” und ändern Sie $f_2' = 0.6$. Speichern Sie diese Einstellung mit „Store Parameters”:

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 5.0 \ \rm ms$   wegen   ${\rm ggt}(0.2,0.6) = 0.2$.

(7)   Wie groß ist bei gleicher Einstellung der maximale Signalwert $x_{\rm max}\text{?}$

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist $x_{\rm max} =x(t_* + i \cdot T_0) = 1.39 \ \rm V$ mit $t_* = 0.3 \ \rm ms$ und $T_0 = 5.0 \ \rm ms$



Zur Handhabung des Applets

Periodendauer fertig version1.png

    (A)     Parametereingabe per Slider

    (B)     Bereich der graphischen Darstellung

    (C)     Variationsmöglichkeit für die graphische Darstellung

    (D)     Abspeichern und Zurückholen von Parametersätzen

    (E)     Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie

    (F)     Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

    (G)     Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte

    (H)     Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)

    (*)   Verschieben mit „$\leftarrow$” (Ausschnitt nach links, Ordinate nach rechts), „$\uparrow$” „$\downarrow$” und „$\rightarrow$”

Andere Möglichkeiten:

    (*)   Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,

    (*)   Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.


Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Open Applet in a new tab