Difference between revisions of "Applets:Binomial- und Poissonverteilung (Applet)"

From LNTwww
Line 72: Line 72:
 
was sich umformen lässt zu:
 
was sich umformen lässt zu:
 
:$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$
 
:$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$
 +
 +
Die '''Rate''' $\lambda$ gibt die mittlere Anzahl der "Erfolge&quot an und wird aus dem Produkt $\lambda=I \cdot p$ berechnet, wobei ein endlicher Wert für $\lambda$ vorrausgesetzt wird.
  
 
==Versuchsdurchführung==
 
==Versuchsdurchführung==

Revision as of 16:39, 18 February 2018

Programmbeschreibung


Dieses Applet ermöglicht die Berechnung und graphische Darstellung von Wahrscheinlichkeiten von

  • Binomialverteilungen:

$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu},$$

$\hspace{0.7cm}$wobei $I$ die Anzahl der binären und statisch voneinander unabhängigen Zufallsgrößen $b_i$ und

$\hspace{0.7cm}p={\rm Pr}(b_i=1)$ die Erfolgswahrscheinlichkeit darstellt, und


  • Poissonverteilungen:

$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)=\frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda},$$

$\hspace{0.7cm}$wobei die Rate$\lambda$ aus $\lambda=I\cdot p$ berechnet werden kann.


Da gleichzeitig bis zu zwei Verteilungsfunktionen eingestellt werden können, können Binomial- und Poissonverteilungen einfach miteinander verglichen werden.

Theoretischer Hintergrund


Wahrscheinlichkeiten der Binomialverteilung


Die Binomialverteilung gehört zu den wichtigsten diskreten Wahrscheinlichkeitsverteilungen und beschreibt die Erfolgswahrscheinlichkeiten von $I$ binären und statistisch voneinander unabhängigen Zufallsgrößen. Zur Berechnung einer solchen Verteilung wird die Formel $$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu}$$

verwendet, wobei

  • $I\hspace{0.3cm}$ die Menge aller gleichartigen, binären und statistisch voneinander unabhängigen Zufallsgrößen $b_i$,


  • $z = \mu = 0, ..., I\hspace{0.3cm}$ die Menge aller "erfolgreichen" Zufallsgrößen $b_i = 1$,


  • $p = {\rm Pr}(b_i=1)\hspace{0.3cm}$ die Erfolgswahrscheinlichkeit und


  • ${I \choose \mu} = \frac{I !}{\mu !\cdot (I-\mu) !}\hspace{0.3cm}$ ("$I \text{ über } \mu$") die Anzahl der möglichen Kombinationen bezeichnet.


Es seien $I = 4$ und $p=0.4$.

Für die Wahrscheinlichkeit von $\mu=0$ Erfolgen berechnent wir $${\rm Pr}(z=0)={4\choose 0}\cdot0.4^0\cdot ({\rm 1}-0.4)^{4-0}.$$

Da in diesem Fall für alle Zufallsgrößen $b_i=0$ gilt, gibt es auch nur eine Kombinationsmöglichkeit $({4\choose 0} = 1)$. Als Ergebnis bekommen wir also $${\rm Pr}(z=0)=0.6^4=0.1296.$$

Für $\mu=1$ haben wir ${4\choose 1} = 4$ Kombinationsmöglichkeiten, da die erfolgreiche Zufallsgröße $b_i=1$ an jeder Position $i=1,2,3,4$ auftreten kann. Wir rechnen also $${\rm Pr}(z=1)=4\cdot 0.4^1\cdot 0.6^3 = 0.3456.$$

Führen wir die Berechnung mit dem gleichen Verfahren fort, so ergeben sich für die restlichen Wahrscheinlichkeiten $${\rm Pr}(z=2)=0.3456,$$ $${\rm Pr}(z=3)=0.1536,$$ $${\rm Pr}(z=4)=0.0256.$$


Wahrscheinlichkeiten der Poissonverteilung


Die Poissonverteilung ist ein Sonderfall der Binomialverteilung, für den die Grenzübergänge

$\hspace{1.0cm}I → ∞\hspace{0.3cm}$ und $\hspace{0.3cm}p → 0$

gelten. Setzt man diese in die Gleichung für die Wahrscheinlichkeiten der Binomialverteilung ein, so erhält man die Auftrittswahrscheinlichkeiten der poissonverteilten Zufallsgröße z:

$$p_\mu = {\rm Pr} ( z=\mu ) = \lim_{I\to\infty} \cdot \frac{I !}{\mu ! \cdot (I-\mu )!} \cdot (\frac{\lambda}{I} )^\mu \cdot ( 1-\frac{\lambda}{I})^{I-\mu},$$

was sich umformen lässt zu:

$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$

Die Rate $\lambda$ gibt die mittlere Anzahl der "Erfolge&quot an und wird aus dem Produkt $\lambda=I \cdot p$ berechnet, wobei ein endlicher Wert für $\lambda$ vorrausgesetzt wird.

Versuchsdurchführung


In der folgenden Beschreibung bedeutet

  • Blau: Verteilungsfunktion 1 (im Applet blau markiert)
  • Rot: Verteilungsfunktion 2 (im Applet rot markiert)


(1)  Setzen Sie Blau: Binomialverteilung $(I=5, p=0.4)$ und Rot: Binomialverteilung $(I=10, p=0.2)$.

Wie lauten die Wahrscheinlichkeiten ${rm Pr}(z=0)$ und ${\rm Pr}(z=1)$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Blau: }{\rm Pr}(z=0)=0.6^5=7.78\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.4 \cdot 0.6^4=25.92\%$

$\hspace{1.85cm}\text{Rot: }{\rm Pr}(z=0)=0.8^10=10.74\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.2 \cdot 0.8^9=26.84\%$

(2)  Es gelten die Einstellungen von (1). Wie groß sind die Wahrscheinlichkeiten ${\rm Pr}(3 \le z \le 5)$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Es gilt }{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z=3) + {\rm Pr}(z=4) + {\rm Pr}(z=5)\text{, oder}$

$\hspace{3.25cm}{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z \le 5) - {\rm Pr}(z \le 2)$

$\hspace{1.85cm}\text{Blau: }{\rm Pr}(3 \le z \le 5) = 1 - 0.6826 = 0.3174$

$\hspace{1.85cm}\text{Rot: }{\rm Pr}(3 \le z \le 5) = 0.9936 - 0.6778 = 0.3158$

(3)  Es gelten die Einstellungen von (1). Wie unterscheiden sich Mittelwert $m_1$ und Streuung $\sigma$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Mittelwert: }m_1 = I \cdot p\hspace{0.3cm} \Rightarrow\hspace{0.3cm} m_1 = 1 \text{ für beide Verteilungen}$.

$\hspace{1.85cm}\text{Streuung: }\sigma = m_1^2 - m_2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_{\rm Blau} = 1.1 \le \sigma_{\rm Rot} = 1.26$

(3)  Setzen Sie Blau: Binomialverteilung $(I=15, p=0.3)$ und Rot: Poissonverteilung $(\lambda=4.5)$.

Welche Unterschiede ergeben sich in Mittelwert $m_1$ und Streuung $\sigma$ zwischen beiden Verteilungen?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Poisson: }\hspace{0.2cm}m_1 = \lambda,\hspace{0.2cm} \sigma = {\sqrt \lambda}$

$\hspace{1.85cm} \text{Blau: }\hspace{0.2cm} m_1 = 4.5, \hspace{0.3cm}\sigma = 1.77$

$\hspace{1.85cm} \text{Rot: }\hspace{0.2cm} m_1 = 4.5, \hspace{0.3cm}\sigma = 2.12$

(5)  Es gelten die Einstellungen von (4). Wie groß sind die Wahrscheinlichkeiten ${\rm Pr}(z \gt 10)$ und ${\rm Pr}(z \gt 15)$


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomial: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - {\rm Pr}(z \le 10) = 1 - 0.9993 = 0.0007;\hspace{0.3cm} {\rm Pr}(z \gt 15) = 0$.

$\hspace{1.85cm}\text{Poisson: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - 0.9933 = 0.0067;\hspace{0.3cm}{\rm Pr}(z \gt 15) \gt 0\hspace{0.5cm}\text{Näherung: }\hspace{0.2cm}{\rm Pr}(z \gt 15) \le {\rm Pr}(z = 16) = \lambda^{16}/16!$