Difference between revisions of "Applets:Binomial- und Poissonverteilung (Applet)"
Line 87: | Line 87: | ||
*$m_1$ zur Berechnung des '''linearen Mittelwerts''': | *$m_1$ zur Berechnung des '''linearen Mittelwerts''': | ||
− | :$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu | + | :$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu$$ |
*und $m_2$ zur Berechnung des '''quadratischen Mittelwerts''': | *und $m_2$ zur Berechnung des '''quadratischen Mittelwerts''': | ||
− | :$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2 | + | :$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2,$$ |
+ | |||
+ | aus denen sich dann die Kenngrößen der | ||
+ | |||
+ | *Varianz $\sigma^2$ (''Satz von Steiner''): | ||
+ | :$$\sigma^2 = m_2 - m_1^2$$ | ||
+ | *und Streuung $\sigma$, auch Standardabweichung genannt: | ||
+ | $$\sigma=\sqrt{m_2-m_1^2}$$ | ||
+ | |||
+ | ermitteln lassen. | ||
==Versuchsdurchführung== | ==Versuchsdurchführung== |
Revision as of 02:06, 19 February 2018
Contents
Programmbeschreibung
Dieses Applet ermöglicht die Berechnung und graphische Darstellung von Wahrscheinlichkeiten von
- Binomialverteilungen:
$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu},$$
$\hspace{0.7cm}$wobei $I$ die Anzahl der binären und statisch voneinander unabhängigen Zufallsgrößen $b_i$ und
$\hspace{0.7cm}p={\rm Pr}(b_i=1)$ die Erfolgswahrscheinlichkeit darstellt, und
- Poissonverteilungen:
$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)=\frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda},$$
$\hspace{0.7cm}$wobei die Rate$\lambda$ aus $\lambda=I\cdot p$ berechnet werden kann.
Da gleichzeitig bis zu zwei Verteilungsfunktionen eingestellt werden können, können Binomial- und Poissonverteilungen einfach miteinander verglichen werden.
Theoretischer Hintergrund
Wahrscheinlichkeiten der Binomialverteilung
Die Binomialverteilung gehört zu den wichtigsten diskreten Wahrscheinlichkeitsverteilungen und beschreibt die Erfolgswahrscheinlichkeiten von $I$ binären und statistisch voneinander unabhängigen Zufallsgrößen. Zur Berechnung einer solchen Verteilung wird die Formel
$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu}$$
verwendet, wobei
- $I\hspace{0.3cm}$ die Menge aller gleichartigen, binären und statistisch voneinander unabhängigen Zufallsgrößen $b_i$,
- $z = \mu = 0, ..., I\hspace{0.3cm}$ die Menge aller "erfolgreichen" Zufallsgrößen $b_i = 1$,
- $p = {\rm Pr}(b_i=1)\hspace{0.3cm}$ die Erfolgswahrscheinlichkeit und
- ${I \choose \mu} = \frac{I !}{\mu !\cdot (I-\mu) !}\hspace{0.3cm}$ ("$I \text{ über } \mu$") die Anzahl der möglichen Kombinationen bezeichnet.
Es seien $I = 4$ und $p=0.4$.
Für die Wahrscheinlichkeit von $\mu=0$ Erfolgen berechnent wir $${\rm Pr}(z=0)={4\choose 0}\cdot0.4^0\cdot ({\rm 1}-0.4)^{4-0}.$$
Da in diesem Fall für alle Zufallsgrößen $b_i=0$ gilt, gibt es auch nur eine Kombinationsmöglichkeit $({4\choose 0} = 1)$. Als Ergebnis bekommen wir also $${\rm Pr}(z=0)=0.6^4=0.1296.$$
Für $\mu=1$ haben wir ${4\choose 1} = 4$ Kombinationsmöglichkeiten, da die erfolgreiche Zufallsgröße $b_i=1$ an jeder Position $i=1,2,3,4$ auftreten kann. Wir rechnen also $${\rm Pr}(z=1)=4\cdot 0.4^1\cdot 0.6^3 = 0.3456.$$
Führen wir die Berechnung mit dem gleichen Verfahren fort, so ergeben sich für die restlichen Wahrscheinlichkeiten $${\rm Pr}(z=2)=0.3456,$$ $${\rm Pr}(z=3)=0.1536,$$ $${\rm Pr}(z=4)=0.0256.$$
Wahrscheinlichkeiten der Poissonverteilung
Die Poissonverteilung ist ein Sonderfall der Binomialverteilung, für den die Grenzübergänge
$\hspace{1.0cm}I → ∞\hspace{0.3cm}$ und $\hspace{0.3cm}p → 0$
gelten. Setzt man diese in die Gleichung für die Wahrscheinlichkeiten der Binomialverteilung ein, so erhält man die Auftrittswahrscheinlichkeiten der poissonverteilten Zufallsgröße z:
- $$p_\mu = {\rm Pr} ( z=\mu ) = \lim_{I\to\infty} \cdot \frac{I !}{\mu ! \cdot (I-\mu )!} \cdot (\frac{\lambda}{I} )^\mu \cdot ( 1-\frac{\lambda}{I})^{I-\mu},$$
was sich umformen lässt zu:
- $$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$
Die Rate $\lambda$ gibt die mittlere Anzahl der "Erfolge" an und wird aus dem Produkt $\lambda=I \cdot p$ berechnet, wobei ein endlicher Wert für $\lambda$ vorrausgesetzt wird.
Momente und Varianz
Momente $m_k$ sind Kenngrößen von Verteilungsfunktionen, die unter anderem der Ermittlung von Erwartungswert und Varianz . Das Moment $k-ter$ Ordnung kann über zwei Möglichkeiten berechnet werden:
- die Scharmittelung bzw. Erwartungswertbildung (Mittelung über alle möglichen Werte):
- $$m_k = {\rm E} [z^k ] = \sum_{\mu = 1}^{M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E[...]\hspace{-0.1cm}:} \hspace{0.1cm} \rm Erwartungswert ,$$
- die Zeitmittelung über die Zufallsfolge $\langle z_ν\rangle$ mit der Laufvariablen $ν = 1 , \ ... \ , N$:
- $$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie\hspace{-0.1cm}:\hspace{0.1cm}Zeitmittelwert.$$
Relevant sind für dieses Programm die Momente
- $m_1$ zur Berechnung des linearen Mittelwerts:
- $$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu$$
- und $m_2$ zur Berechnung des quadratischen Mittelwerts:
- $$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2,$$
aus denen sich dann die Kenngrößen der
- Varianz $\sigma^2$ (Satz von Steiner):
- $$\sigma^2 = m_2 - m_1^2$$
- und Streuung $\sigma$, auch Standardabweichung genannt:
$$\sigma=\sqrt{m_2-m_1^2}$$
ermitteln lassen.
Versuchsdurchführung
In der folgenden Beschreibung bedeutet
- Blau: Verteilungsfunktion 1 (im Applet blau markiert)
- Rot: Verteilungsfunktion 2 (im Applet rot markiert)
(1) Setzen Sie Blau: Binomialverteilung $(I=5, p=0.4)$ und Rot: Binomialverteilung $(I=10, p=0.2)$.
- Wie lauten die Wahrscheinlichkeiten ${rm Pr}(z=0)$ und ${\rm Pr}(z=1)$?
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Blau: }{\rm Pr}(z=0)=0.6^5=7.78\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.4 \cdot 0.6^4=25.92\%$
$\hspace{1.85cm}\text{Rot: }{\rm Pr}(z=0)=0.8^10=10.74\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.2 \cdot 0.8^9=26.84\%$
(2) Es gelten die Einstellungen von (1). Wie groß sind die Wahrscheinlichkeiten ${\rm Pr}(3 \le z \le 5)$?
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Es gilt }{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z=3) + {\rm Pr}(z=4) + {\rm Pr}(z=5)\text{, oder}$
$\hspace{3.25cm}{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z \le 5) - {\rm Pr}(z \le 2)$
$\hspace{1.85cm}\text{Blau: }{\rm Pr}(3 \le z \le 5) = 1 - 0.6826 = 0.3174$
$\hspace{1.85cm}\text{Rot: }{\rm Pr}(3 \le z \le 5) = 0.9936 - 0.6778 = 0.3158$
(3) Es gelten die Einstellungen von (1). Wie unterscheiden sich Mittelwert $m_1$ und Streuung $\sigma$?
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Mittelwert: }m_1 = I \cdot p\hspace{0.3cm} \Rightarrow\hspace{0.3cm} m_1 = 1 \text{ für beide Verteilungen}$.
$\hspace{1.85cm}\text{Streuung: }\sigma = m_1^2 - m_2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_{\rm Blau} = 1.1 \le \sigma_{\rm Rot} = 1.26$
(3) Setzen Sie Blau: Binomialverteilung $(I=15, p=0.3)$ und Rot: Poissonverteilung $(\lambda=4.5)$.
- Welche Unterschiede ergeben sich in Mittelwert $m_1$ und Streuung $\sigma$ zwischen beiden Verteilungen?
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Poisson: }\hspace{0.2cm}m_1 = \lambda,\hspace{0.2cm} \sigma = {\sqrt \lambda}$
$\hspace{1.85cm} \text{Blau: }\hspace{0.2cm} m_1 = 4.5, \hspace{0.3cm}\sigma = 1.77$
$\hspace{1.85cm} \text{Rot: }\hspace{0.2cm} m_1 = 4.5, \hspace{0.3cm}\sigma = 2.12$
(5) Es gelten die Einstellungen von (4). Wie groß sind die Wahrscheinlichkeiten ${\rm Pr}(z \gt 10)$ und ${\rm Pr}(z \gt 15)$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomial: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - {\rm Pr}(z \le 10) = 1 - 0.9993 = 0.0007;\hspace{0.3cm} {\rm Pr}(z \gt 15) = 0$.
$\hspace{1.85cm}\text{Poisson: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - 0.9933 = 0.0067;\hspace{0.3cm}{\rm Pr}(z \gt 15) \gt 0\hspace{0.5cm}\text{Näherung: }\hspace{0.2cm}{\rm Pr}(z \gt 15) \le {\rm Pr}(z = 16) = \lambda^{16}/16!$