Difference between revisions of "Aufgaben:Exercise 4.4Z: Contour Lines of the "2D-PDF""

From LNTwww
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
Line 15: Line 15:
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]].
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
 
*Die hier behandelte Thematik ist in zwei Lernvideos zusammengefasst:
 
*Die hier behandelte Thematik ist in zwei Lernvideos zusammengefasst:
 
:[[Gaußsche Zufallsgrößen ohne statistische Bindungen]]
 
:[[Gaußsche Zufallsgrößen ohne statistische Bindungen]]

Revision as of 13:03, 29 May 2018

Höhenlinien der Gaußschen 2D-WDF

Gegeben ist eine zweidimensionale Gaußsche Zufallsgröße $(x, y)$ mit dem Mittelwert $(0, 0)$ und der 2D–WDF

$$f_{xy}(x, y) = C\cdot{\rm e}^{-(x^{\rm 2} + y^{\rm 2} +\sqrt{\rm 2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm} y)}.$$

Bekannt ist weiter, dass die beiden Streuungen $\sigma_x$ und $\sigma_y$ jeweils gleich $1$ sind. In der Skizze eingetragen sind:

  • eine Höhenlinie dieser WDF für $f_{xy}(x,y) =0.2$,
  • die Ellipsenhauptachse (EA), und
  • die Korrelationsgerade $y=K(x)$.


Hinweise:

  • Die hier behandelte Thematik ist in zwei Lernvideos zusammengefasst:
Gaußsche Zufallsgrößen ohne statistische Bindungen
Gaußsche Zufallsgrößen mit statistischen Bindungen


Fragebogen

1

Wie groß ist der Korrelationskoeffizient $\rho_{xy}$?

$\rho_{xy} \ =$

2

Wie groß ist der Maximalwert $C = f_{xy}(0, 0)$ der WDF?

$C \ =$

3

Wie groß ist der Winkel $\alpha$ zwischen Ellipsenhauptachse (EA) und $x$-Achse?

$\alpha\ =$

$ \ \rm Grad$

4

Bei welchen Werten $x_0$ bzw. $y_0$ schneidet die Höhenlinie $f_{xy}(x,y) =0.2$ die Ellipsenhauptachse?
Welcher Zusammenhang besteht zwischen $x_0$ und $y_0$?

$x_0/y_0 \ =$

5

Welche Aussagen treffen hinsichtlich der Korrelationsgeraden $K(x)$ zu?

Die Korrelationsgerade ist steiler als die Ellipsenhauptachse.
Der Winkel von $K(x)$ gegenüber der $x$-Achse ist etwa $-35^\circ$.
Die Korrelationsgerade schneidet alle Höhenlinien dort, wo an die Ellipse eine vertikale Tangente angelegt werden kann.


Musterlösung

(1)  Auch ohne die Angabe $\sigma_x = \sigma_y = 1$ könnte man erkennen, dass die beiden Streuungen gleich sind, da im Exponenten der 2D–WDF $f_{xy}(x, y)$ die Koeffizienten bei $x^2$ und $y^2$ gleich sind. Durch Koeffizientenvergleich erhält man somit:

$$\frac{- 2 \rho_{xy}}{\sigma_x\cdot\sigma_y} = \sqrt{2}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \rho_{xy}=\frac{-1}{\sqrt{2}} \hspace{0.15cm}\underline{\approx -0.707}.$$

(2)  Mit den unter Punkt (1) berechneten Zahlenwerten erhalten wir:

$$C=\frac{\rm 1}{\rm 2\it\pi\cdot\sigma_x\cdot\sigma_y\cdot\sqrt{\rm 1 - \rho_{xy}^{\rm 2}}} =\frac{\rm 1}{\rm 2\pi\cdot\rm 1\cdot 1\cdot\sqrt{0.5}}=\frac{\rm 1}{\sqrt{\rm 2}\cdot \pi}\hspace{0.15cm}\underline{\approx \rm 0.225}.$$

(3)  Die allgemeine Gleichung lautet:

$$\alpha = {\rm 1}/{\rm 2}\cdot \rm arctan(\rm 2 \cdot\it \rho_{xy}\cdot \frac{\sigma_x\cdot\sigma_y}{\sigma_x^{\rm 2} - \sigma_y^{\rm 2}}).$$

Gilt $\sigma_x = \sigma_y$ und $\rho_{xy} \ne 0$, so ist der Winkel immer $\alpha = \pm 45^\circ$, wobei das Vorzeichen gleich dem Vorzeichen von $\rho_{xy}$ ist. Im vorliegenden Fall gilt $\alpha\hspace{0.15cm}\underline{ = -45^\circ}$.

(4)  Für die eingezeichnete Höhenlinie gilt:

$$f_{xy}(x, y)=\frac{\rm 1}{\sqrt{\rm 2}\cdot \pi}\cdot {\rm e}^{(\it x^{\rm 2} + y^{\rm 2} + \sqrt{\rm 2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm}y)}=\rm 0.2$$
$$\Rightarrow {\rm e}^{-( x^{\rm 2} + y^{\rm 2} + \sqrt{\rm 2}\hspace{0.05cm} \cdot \hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y)} = 0.8885 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x^{\rm 2} + y^{\rm 2} + \sqrt{\rm 2}\cdot\hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y = -{\rm ln(0.8885)} \approx\rm 0.118.$$

Der Winkel der Ellipsenhauptachse ist $\alpha{ = -45^\circ}$. Deshalb muss $y_0 = - x_0$ gelten. Daraus folgt weiter:

$$x_{\rm 0}^{\rm 2} + (-x_{\rm 0})^{\rm 2} + \sqrt{\rm 2}\cdot x_{\rm 0}(-x_{\rm 0}) = 0.118$$
$$\Rightarrow (\rm 2 - \sqrt{\rm 2})\cdot \it x_{\rm 0}^{\rm 2} = {\rm 0.118} \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x_{\rm 0}^{\rm 2} \approx \frac{\rm0.118}{\rm0.585}\approx\rm 0.202; \hspace{0.5cm} {\it x}_{\rm 0}\approx\pm\rm 0.450.$$

Die beiden Schnittpunkte der eingezeichneten Höhenlinien mit der Ellipsenhauptachse liegen somit bei $(+0.45, -0.45)$ und $(-0.45, +0.45)$. Der Quotient ist in beiden Fällen $x_0/y_0 \hspace{0.15cm}\underline{ = -1}$.


(5)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Mit $\sigma_x = \sigma_y$ und dem Ergebnis der Teilaufgabe (1) gilt für den Winkel der Korrelationsgeraden:
$$\theta_{y\rightarrow x} = \arctan (\rho_{\it xy})=\arctan(-{\rm 1}/{\sqrt{\rm 2}})\approx -\rm 35.3^{\circ}.$$
Das bedeutet: Die erste Aussage ist falsch und die zweite richtig.
  • Nachfolgend der Beweis für die Richtigkeit der letzten Aussage: Löst man die Ellipsengleichung (mit $z = 0.118$), also $x^{\rm 2}+ y^{\rm 2} +\sqrt{\rm 2}\cdot \it x\cdot \it y - \it z = \rm 0 ,$ nach $y$ auf, so erhält man nach Lösung einer quadratischen Gleichung
$$y_{\rm 1, \ 2}={\sqrt{\rm 2}}/ {\rm 2} \cdot x\pm\sqrt{{x^{\rm 2}}/{\rm 2}-x^{\rm 2}+{\it z}} \hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm 1, \ 2}={\it x}/{\sqrt{\rm 2}}\pm \sqrt{z-{x^{\rm 2}}/{\rm 2}}.$$
  • Die vertikale Tangente ergibt sich für den Fall, dass die beiden Lösungen $y_{\rm 1, \ 2}$ identisch sind. Das heißt: der Wurzelausdruck muss den Wert $0$ ergeben. Die Lösung für positives $x$ lautet dann:   $x_{\rm T}=\sqrt{\rm 2\cdot \it z}=\rm \rm 0.485.$
  • Eingesetzt in die Ellipsengleichung erhält man für den $y$-Wert des Tangentialpunktes:
$$x_{\rm T}^{\rm 2} + y_{\rm T}^{\rm 2} + \sqrt{2} \cdot x_{\rm T} \cdot y_{\rm T} - z = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} 2 z + y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} - z = 0$$
$$\Rightarrow y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} + z = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} (y_{\rm T} + \sqrt{ z}) = 0\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm T} = -\sqrt{ z} = -0.343.$$
  • Daraus ergibt sich $y_{\rm T}=-{x_{\rm T}}/{\sqrt{\rm 2}}.$ Das bedeutet aber auch: Der Tangentialpunkt $(x_{\rm T}, y_{\rm T})$ liegt exakt auf der Korrelationsgeraden $y=K(x)=-{ x}/{\sqrt{\rm 2}}.$