Difference between revisions of "Aufgaben:Exercise 3.9Z: Convolution of Gaussian Pulses"
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “) |
|||
Line 13: | Line 13: | ||
− | '' | + | ''Hinweis:'' |
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltungssatz und Faltungsoperation]]. | *Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltungssatz und Faltungsoperation]]. | ||
Line 45: | Line 45: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''(1)''' Durch Fouriertransformation erhält man: | '''(1)''' Durch Fouriertransformation erhält man: | ||
− | :$$X( f ) = x_0 \cdot \Delta t_x \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_x \cdot f} \right)^2 } , \hspace{0.5cm}H(f) = {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_h \cdot f} \right)^2 } .$$ | + | :$$X( f ) = x_0 \cdot \Delta t_x \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_x \hspace{0.05cm}\cdot \hspace{0.05cm} f} \right)^2 } , \hspace{0.5cm}H(f) = {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_h \hspace{0.05cm}\cdot \hspace{0.05cm}f} \right)^2 } .$$ |
Die gesuchten Werte sind $X(f = 0)\;\underline{ = 4 \,\text{mV/Hz}}$ und $H(f = 0)\; \underline{= 1}$. | Die gesuchten Werte sind $X(f = 0)\;\underline{ = 4 \,\text{mV/Hz}}$ und $H(f = 0)\; \underline{= 1}$. | ||
Line 52: | Line 52: | ||
'''(2)''' Der Faltung im Zeitbereich entspricht die Multiplikation im Frequenzbereich: | '''(2)''' Der Faltung im Zeitbereich entspricht die Multiplikation im Frequenzbereich: | ||
:$$Y(f) = X(f) \cdot H(f) = x_0 \cdot \Delta t_x \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_x^2 + \Delta t_h^2 } \right)f^2 } .$$ | :$$Y(f) = X(f) \cdot H(f) = x_0 \cdot \Delta t_x \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_x^2 + \Delta t_h^2 } \right)f^2 } .$$ | ||
− | Mit der Abkürzung $\Delta t_y = (\Delta t_x^2 + \Delta t_h^2)^{1/2} = 5\, \text{ms}$ kann hierfür auch | + | Mit der Abkürzung $\Delta t_y = (\Delta t_x^2 + \Delta t_h^2)^{1/2} = 5\, \text{ms}$ kann man hierfür auch schreiben: |
− | :$$Y(f) = x_0 \cdot \Delta t_x \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_y \cdot f} \right)^2 } .$$ | + | :$$Y(f) = x_0 \cdot \Delta t_x \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_y \hspace{0.05cm}\cdot \hspace{0.05cm} f} \right)^2 } .$$ |
*Bei der Frequenz $f = 0$ sind die Spektralwerte am Eingang und Ausgang des Gaußfilters gleich, also gilt: | *Bei der Frequenz $f = 0$ sind die Spektralwerte am Eingang und Ausgang des Gaußfilters gleich, also gilt: | ||
− | :$$Y(f = 0) \;\underline{= 4 \text{mV/Hz}}.$$ | + | :$$Y(f = 0) \;\underline{= 4 \text{ mV/Hz}}.$$ |
*Der Funktionsverlauf von ${Y(f)}$ ist schmaler als ${X(f)}$ und auch schmaler als ${H(f)}$. | *Der Funktionsverlauf von ${Y(f)}$ ist schmaler als ${X(f)}$ und auch schmaler als ${H(f)}$. | ||
Line 61: | Line 61: | ||
'''(3)''' Es gilt die folgende Fourierkorrespondenz: | '''(3)''' Es gilt die folgende Fourierkorrespondenz: | ||
− | :$${\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_y \cdot f} \right)^2 }\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{1}{\Delta t_y } \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {t/\Delta t_y } \right)^2 } .$$ | + | :$${\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_y \hspace{0.05cm}\cdot \hspace{0.05cm} f} \right)^2 }\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{1}{\Delta t_y } \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {t/\Delta t_y } \right)^2 } .$$ |
Damit erhält man: | Damit erhält man: | ||
:$$y(t) = x(t) * h(t) = x_0 \cdot \frac{\Delta t_x }{\Delta t_y } \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {t/\Delta t_y } \right)^2 } .$$ | :$$y(t) = x(t) * h(t) = x_0 \cdot \frac{\Delta t_x }{\Delta t_y } \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {t/\Delta t_y } \right)^2 } .$$ | ||
− | *Der Maximalwert des Signals ${y(t)}$ liegt ebenfalls bei $t = 0$ und beträgt $y_0 \hspace{0.15cm}\underline{= 0.8 V}$. | + | *Der Maximalwert des Signals ${y(t)}$ liegt ebenfalls bei $t = 0$ und beträgt $y_0 \hspace{0.15cm}\underline{= 0.8 \text{ V} }$. |
− | *Die äquivalente Impulsdauer ergibt sich zu $\Delta t_y \hspace{0.15cm}\underline{= 5 \text{ms}}$ (siehe obiges Bild, rechte Skizze). | + | *Die äquivalente Impulsdauer ergibt sich zu $\Delta t_y \hspace{0.15cm}\underline{= 5 \text{ ms}}$ (siehe obiges Bild, rechte Skizze). |
*Das bedeutet: Das Gaußfilter ${H(f)}$ bewirkt, dass der Ausgangsimpuls ${y(t)}$ kleiner und breiter als der Eingangsimpuls ${x(t)}$ ist. | *Das bedeutet: Das Gaußfilter ${H(f)}$ bewirkt, dass der Ausgangsimpuls ${y(t)}$ kleiner und breiter als der Eingangsimpuls ${x(t)}$ ist. | ||
*Die Impulsform bleibt weiterhin gaußförmig. | *Die Impulsform bleibt weiterhin gaußförmig. |
Revision as of 17:18, 24 July 2018
Es soll das Faltungsergebnis zweier Gaußfunktionen ermittelt werden. Wir betrachten einen gaußförmigen Eingangsimpuls ${x(t)}$ mit der Amplitude $x_0 = 1\,\text{ V}$ und der äquivalenten Dauer $\Delta t_x = 4 \,\text{ms}$ sowie eine ebenfalls gaußförmige Impulsantwort ${h(t)}$, welche die äquivalente Dauer $\Delta t_h = 3 \,\text{ms}$ aufweist:
- $$x( t ) = x_0 \cdot {\rm{e}}^{ - {\rm{\pi }}( {t/\Delta t_x } )^2 } ,$$
- $$h( t ) = \frac{1}{\Delta t_h } \cdot {\rm{e}}^{ - {\rm{\pi }}( {t/\Delta t_h } )^2 } .$$
Gesucht ist das Ausgangssignal ${y(t)} = {x(t)} ∗{h(t)}$, wobei der Umweg über die Spektralfunktionen gegangen werden soll.
Hinweis:
- Die Aufgabe gehört zum Kapitel Faltungssatz und Faltungsoperation.
Fragebogen
Musterlösung
- $$X( f ) = x_0 \cdot \Delta t_x \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_x \hspace{0.05cm}\cdot \hspace{0.05cm} f} \right)^2 } , \hspace{0.5cm}H(f) = {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_h \hspace{0.05cm}\cdot \hspace{0.05cm}f} \right)^2 } .$$
Die gesuchten Werte sind $X(f = 0)\;\underline{ = 4 \,\text{mV/Hz}}$ und $H(f = 0)\; \underline{= 1}$.
(2) Der Faltung im Zeitbereich entspricht die Multiplikation im Frequenzbereich:
- $$Y(f) = X(f) \cdot H(f) = x_0 \cdot \Delta t_x \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_x^2 + \Delta t_h^2 } \right)f^2 } .$$
Mit der Abkürzung $\Delta t_y = (\Delta t_x^2 + \Delta t_h^2)^{1/2} = 5\, \text{ms}$ kann man hierfür auch schreiben:
- $$Y(f) = x_0 \cdot \Delta t_x \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_y \hspace{0.05cm}\cdot \hspace{0.05cm} f} \right)^2 } .$$
- Bei der Frequenz $f = 0$ sind die Spektralwerte am Eingang und Ausgang des Gaußfilters gleich, also gilt:
- $$Y(f = 0) \;\underline{= 4 \text{ mV/Hz}}.$$
- Der Funktionsverlauf von ${Y(f)}$ ist schmaler als ${X(f)}$ und auch schmaler als ${H(f)}$.
(3) Es gilt die folgende Fourierkorrespondenz:
- $${\rm{e}}^{ - {\rm{\pi }}\left( {\Delta t_y \hspace{0.05cm}\cdot \hspace{0.05cm} f} \right)^2 }\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{1}{\Delta t_y } \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {t/\Delta t_y } \right)^2 } .$$
Damit erhält man:
- $$y(t) = x(t) * h(t) = x_0 \cdot \frac{\Delta t_x }{\Delta t_y } \cdot {\rm{e}}^{ - {\rm{\pi }}\left( {t/\Delta t_y } \right)^2 } .$$
- Der Maximalwert des Signals ${y(t)}$ liegt ebenfalls bei $t = 0$ und beträgt $y_0 \hspace{0.15cm}\underline{= 0.8 \text{ V} }$.
- Die äquivalente Impulsdauer ergibt sich zu $\Delta t_y \hspace{0.15cm}\underline{= 5 \text{ ms}}$ (siehe obiges Bild, rechte Skizze).
- Das bedeutet: Das Gaußfilter ${H(f)}$ bewirkt, dass der Ausgangsimpuls ${y(t)}$ kleiner und breiter als der Eingangsimpuls ${x(t)}$ ist.
- Die Impulsform bleibt weiterhin gaußförmig.