Difference between revisions of "Aufgaben:Exercise 3.1Z: Triangular PDF"
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID109__Sto_Z_3_1.png|right|Dreieck-WDF und Kennlinie]] | + | [[File:P_ID109__Sto_Z_3_1.png|right|frame|Dreieck-WDF und Kennlinie $y(x)$]] |
− | Wir betrachten eine kontinuierliche Zufallsgröße $x$ mit der oben skizzierten WDF. Der Minimalwert des Signals ist $x_{min} = -2\hspace{0.05cm} {\rm V}$. Dagegen ist der maximale Wert $x_{max}$ ein freier Parameter, der Werte zwischen $2\hspace{0.05cm}\rm V$ und $4\hspace{0.05cm} \rm V$ annehmen kann. | + | Wir betrachten eine kontinuierliche Zufallsgröße $x$ mit der oben skizzierten WDF. Der Minimalwert des Signals ist $x_{\rm min} = -2\hspace{0.05cm} {\rm V}$. Dagegen ist der maximale Wert $x_{\rm max}$ ein freier Parameter, der Werte zwischen $2\hspace{0.05cm}\rm V$ und $4\hspace{0.05cm} \rm V$ annehmen kann. |
Die Zufallsgröße $x$ soll hier als der Momentanwert eines Zufallssignals aufgefasst werden. Gibt man dieses Signal $x(t)$ auf einen Amplitudenbegrenzer mit der Kennlinie (siehe untere Skizze) | Die Zufallsgröße $x$ soll hier als der Momentanwert eines Zufallssignals aufgefasst werden. Gibt man dieses Signal $x(t)$ auf einen Amplitudenbegrenzer mit der Kennlinie (siehe untere Skizze) | ||
$$y(t)=\left\{\begin{array}{*{4}{c}} -2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} x(t)<-2\hspace{0.05cm} {\rm V} , \\ x(t) & {\rm falls}\hspace{0.1cm}-2\hspace{0.05cm} {\rm V} \le x(t)\le +2\hspace{0.05cm} {\rm V}, \\ +2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} {\it x}({\it t})>+2\hspace{0.05cm} {\rm V}, \\\end{array}\right.$$ | $$y(t)=\left\{\begin{array}{*{4}{c}} -2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} x(t)<-2\hspace{0.05cm} {\rm V} , \\ x(t) & {\rm falls}\hspace{0.1cm}-2\hspace{0.05cm} {\rm V} \le x(t)\le +2\hspace{0.05cm} {\rm V}, \\ +2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} {\it x}({\it t})>+2\hspace{0.05cm} {\rm V}, \\\end{array}\right.$$ | ||
− | so entsteht das Signal $y(t)$ bzw. die neue Zufallsgröße $y$, die in den beiden letzten Teilfragen (5) und (6) betrachtet wird. <br /> | + | so entsteht das Signal $y(t)$ bzw. die neue Zufallsgröße $y$, die in den beiden letzten Teilfragen '''(5)''' und '''(6)''' betrachtet wird. <br /> |
+ | |||
+ | *Für die Teilaufgaben '''(1)''' und '''(2)''' gelte $x_{\rm max} = 2\hspace{0.05cm} {\rm V} $. | ||
+ | * Für alle weiteren Teilaufgaben ist $x_{\rm max} = 4\hspace{0.05cm} {\rm V} $ zu setzen. | ||
+ | |||
+ | |||
+ | |||
− | |||
Line 18: | Line 23: | ||
*Eine Zusammenfassung der hier behandelten Thematik bietet das folgende Lernvideo:<br /> | *Eine Zusammenfassung der hier behandelten Thematik bietet das folgende Lernvideo:<br /> | ||
− | :[[Wahrscheinlichkeit und Wahrscheinlichkeitsdichtefunktion]] | + | ::[[Wahrscheinlichkeit_und_WDF_(Lernvideo)|Wahrscheinlichkeit und Wahrscheinlichkeitsdichtefunktion]] |
Line 26: | Line 31: | ||
{Es sei $x_{\rm max} = 2\hspace{0.05cm} {\rm V}$. Berechnen Sie den Parameter $A = f_x(0)$. | {Es sei $x_{\rm max} = 2\hspace{0.05cm} {\rm V}$. Berechnen Sie den Parameter $A = f_x(0)$. | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $A \ = \ $ { 0.5 3% } $\ \rm 1/V$ |
− | {Mit welcher Wahrscheinlichkeit ist $|x(t)|$ kleiner als $x_{\rm max}/2$? | + | {Weiterhin sei $x_{\rm max} = 2\hspace{0.05cm} {\rm V}$. Mit welcher Wahrscheinlichkeit ist $|x(t)|$ kleiner als $x_{\rm max}/2$? |
|type="{}"} | |type="{}"} | ||
− | + | ${\rm Pr}(|x| < 2\hspace{0.05cm} {\rm V}) \ = \ $ { 0.75 3% } | |
{Nun gelte $x_{\rm max} = 4\hspace{0.05cm} {\rm V}$. Wie groß ist die Wahrscheinlichkeit, dass $x$ zwischen $1\hspace{0.05cm} {\rm V}$ und $3\hspace{0.05cm} {\rm V}$ liegt? | {Nun gelte $x_{\rm max} = 4\hspace{0.05cm} {\rm V}$. Wie groß ist die Wahrscheinlichkeit, dass $x$ zwischen $1\hspace{0.05cm} {\rm V}$ und $3\hspace{0.05cm} {\rm V}$ liegt? | ||
|type="{}"} | |type="{}"} | ||
− | + | ${\rm Pr}(1\hspace{0.05cm} {\rm V} < x <3\hspace{0.05cm} {\rm V}) \ = \ $ { 0.333 3% } | |
− | {Wie groß ist die Wahrscheinlichkeit, dass $x$ genau gleich $2\hspace{0.05cm} {\rm V}$ ist? | + | {Es sei weiterhin $x_{\rm max} = 4\hspace{0.05cm} {\rm V}$. Wie groß ist die Wahrscheinlichkeit, dass $x$ genau gleich $2\hspace{0.05cm} {\rm V}$ ist? |
|type="{}"} | |type="{}"} | ||
− | + | ${\rm Pr}(x =2\hspace{0.05cm} {\rm V})\ = \ $ { 0. } | |
Line 51: | Line 56: | ||
− | {Wie groß ist die Wahrscheinlichkeit, dass $y$ genau gleich $2\hspace{0.05cm} {\rm V}$ ist? | + | {Wie groß ist die Wahrscheinlichkeit mit $x_{\rm max} = 4\hspace{0.05cm} {\rm V}$, dass $y$ genau gleich $2\hspace{0.05cm} {\rm V}$ ist? |
|type="{}"} | |type="{}"} | ||
− | + | ${\rm Pr}(y =2\hspace{0.05cm} {\rm V})\ = \ $ { 0.167 3% } | |
Revision as of 07:37, 8 August 2018
Wir betrachten eine kontinuierliche Zufallsgröße $x$ mit der oben skizzierten WDF. Der Minimalwert des Signals ist $x_{\rm min} = -2\hspace{0.05cm} {\rm V}$. Dagegen ist der maximale Wert $x_{\rm max}$ ein freier Parameter, der Werte zwischen $2\hspace{0.05cm}\rm V$ und $4\hspace{0.05cm} \rm V$ annehmen kann.
Die Zufallsgröße $x$ soll hier als der Momentanwert eines Zufallssignals aufgefasst werden. Gibt man dieses Signal $x(t)$ auf einen Amplitudenbegrenzer mit der Kennlinie (siehe untere Skizze) $$y(t)=\left\{\begin{array}{*{4}{c}} -2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} x(t)<-2\hspace{0.05cm} {\rm V} , \\ x(t) & {\rm falls}\hspace{0.1cm}-2\hspace{0.05cm} {\rm V} \le x(t)\le +2\hspace{0.05cm} {\rm V}, \\ +2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} {\it x}({\it t})>+2\hspace{0.05cm} {\rm V}, \\\end{array}\right.$$
so entsteht das Signal $y(t)$ bzw. die neue Zufallsgröße $y$, die in den beiden letzten Teilfragen (5) und (6) betrachtet wird.
- Für die Teilaufgaben (1) und (2) gelte $x_{\rm max} = 2\hspace{0.05cm} {\rm V} $.
- Für alle weiteren Teilaufgaben ist $x_{\rm max} = 4\hspace{0.05cm} {\rm V} $ zu setzen.
Hinweise:
- Die Aufgabe gehört zum Kapitel Wahrscheinlichkeitsdichtefunktion.
- Eine Zusammenfassung der hier behandelten Thematik bietet das folgende Lernvideo:
Fragebogen
Musterlösung
(2) Mit $x_{\rm max} = 2\hspace{0.05cm} {\rm V}$ ergibt sich die WDF nach der linken Grafik. Die Schraffierung markiert die gesuchte Wahrscheinlichkeit und man erhält durch einfache geometrische Überlegungen: $${\rm Pr}(|x|<\rm 1\hspace{0.05cm} V)\hspace{0.15cm}\underline{=\rm 0.75}.$$
(3) Mit $x_{\rm max} = 4\hspace{0.05cm} {\rm V}$ erhält man die rechts dargestellte WDF und den Maximalwert $A = 1/(3\hspace{0.05cm} {\rm V})$. Die schraffierte Fläche gibt wieder die gesuchte Wahrscheinlichkeit an, die man zum Beispiel über das flächengleiche Rechteck bestimmen kann: $${\rm Pr}(1\hspace{0.05cm} {\rm V}< x<3\hspace{0.05cm} {\rm V})=\rm \frac{1}{6\hspace{0.05cm} {\rm V}}\cdot 2\hspace{0.05cm} {\rm V}=\hspace{0.15cm}\underline{0.333}.$$
(4) Diese Wahrscheinlichkeit ist definitionsgemäß gleich null ${\rm Pr}(x =2\hspace{0.05cm} {\rm V}) \;\underline {= 0}$, da $x$ eine kontinuierliche Zufallsgröße darstellt.
(5) Nur die letzte Aussage der vorgegebenen Antworten ist zutreffend:
Die WDF $f_y(y)$ beinhaltet einen kontinuierlichen Anteil, aber auch eine Diracfunktion an der Stelle $y = 2\hspace{0.05cm} {\rm V}$ mit dem Gewicht ${\rm Pr}(x >2\hspace{0.05cm} {\rm V})$ .
(6) Nebenstehend ist die Wahrscheinlichkeitsdichte der Zufallsgröße $y$ dargestellt. Aus der oberen rechten Abbildung zur Teilaufgabe (3) erkennt man den Zusammenhang: $${\rm Pr}( y=2\hspace{0.05cm} {\rm V})) = {\rm Pr}( x> 2\hspace{0.05cm} {\rm V})) = \frac{1}{2}\cdot\frac{1}{6\hspace{0.05cm} {\rm V}}\cdot2{\hspace{0.05cm} {\rm V}} = \hspace{-0.15cm}{1}/{6}\hspace{0.15cm}\underline{=0.167}.$$