Difference between revisions of "Aufgaben:Exercise 4.1: Triangular (x, y) Area"
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID172__Sto_A_4_1.png|right| | + | [[File:P_ID172__Sto_A_4_1.png|right|frame|Dreieckigförmiges 2D-Gebiet]] |
− | Eine 2D-Zufallsgröße ist durch die nebenstehende Skizze definiert | + | Eine 2D-Zufallsgröße ist durch die nebenstehende Skizze definiert: |
+ | *Für ($x$, $y$) können nur Werte innerhalb des durch die drei Eckpunkte $(0,\ 1)$, $(4,\ 3)$ und $(4,\ 5)$ festgelegten dreieckförmigen Gebietes auftreten. | ||
+ | *Innerhalb des Dreiecks sind alle Zufallsgrößen $(x, \ y)$ gleichwahrscheinlich. | ||
+ | *Für die 2D–WDF gilt somit: | ||
:$$f_{xy}(x,y) = A .$$ | :$$f_{xy}(x,y) = A .$$ | ||
− | Zusätzlich ist die Gerade$x = y$ ⇒ „Winkelhalbierende” in obiger Skizze eingezeichnet | + | Zusätzlich ist die Gerade $x = y$ ⇒ „Winkelhalbierende” in obiger Skizze eingezeichnet ⇒ siehe Teilaufgabe '''(2)'''. |
− | '' | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Hinweis:'' | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]]. | ||
Line 19: | Line 27: | ||
{Bestimmen Sie die WDF–Konstante anhand geometrischer Überlegungen. | {Bestimmen Sie die WDF–Konstante anhand geometrischer Überlegungen. | ||
|type="{}"} | |type="{}"} | ||
− | $A \ =$ { 0.25 3% } | + | $A \ = \ $ { 0.25 3% } |
{Berechnen Sie die Wahrscheinlichkeit, dass $x$ größer als $y$ ist. | {Berechnen Sie die Wahrscheinlichkeit, dass $x$ größer als $y$ ist. | ||
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(x > y) \ =$ { 0.25 3% } | + | ${\rm Pr}(x > y) \ = \ $ { 0.25 3% } |
− | {Ermitteln Sie die Rand | + | {Ermitteln Sie die Rand–WDF $f_x(x)$. Berechnen Sie die Wahrscheinlichkeit, dass $x$ größer oder gleich $2$ ist. <br>Überprüfen Sie den Wert anhand der 2D–WDF. |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(x ≥ 2)\ =$ { 0.75 3% } | + | ${\rm Pr}(x ≥ 2)\ = \ $ { 0.75 3% } |
− | {Ermitteln Sie die Rand | + | {Ermitteln Sie die Rand–WDF $f_y(y)$. Berechnen Sie die Wahrscheinlichkeit, dass $y$ größer oder gleich $3$ ist. <br>Überprüfen Sie den Wert anhand der 2D–WDF. |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(y ≥ 3)\ =$ { 0.5 3% } | + | ${\rm Pr}(y ≥ 3)\ = \ $ { 0.5 3% } |
{Wie groß ist die Wahrscheinlichkeit, dass die Zufallsgröße $x$ größer oder gleich $2$ und gleichzeitig die Zufallsgröße $y$ größer oder gleich $3$ ist? | {Wie groß ist die Wahrscheinlichkeit, dass die Zufallsgröße $x$ größer oder gleich $2$ und gleichzeitig die Zufallsgröße $y$ größer oder gleich $3$ ist? | ||
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}[(x ≥ 2) ∩ (y ≥ 3)]\ =$ { 0.5 3% } | + | ${\rm Pr}\big[(x ≥ 2) ∩ (y ≥ 3)\big]\ = \ $ { 0.5 3% } |
{Wie groß ist die Wahrscheinlichkeit, dass $x$ größer oder gleich $2$ ist, unter der Bedingung, dass $y \ge 3$ gilt? | {Wie groß ist die Wahrscheinlichkeit, dass $x$ größer oder gleich $2$ ist, unter der Bedingung, dass $y \ge 3$ gilt? | ||
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}[x ≥ 2\hspace{0.05cm} | \hspace{0.05cm} y ≥ 3]\ =$ { 1 3% } | + | ${\rm Pr}\big[x ≥ 2\hspace{0.05cm} | \hspace{0.05cm} y ≥ 3\big]\ = \ $ { 1 3% } |
{Wie groß ist die Wahrscheinlichkeit, dass $y \ge 3$ ist, unter der Bedingung, dass $x \ge 2$ gilt? | {Wie groß ist die Wahrscheinlichkeit, dass $y \ge 3$ ist, unter der Bedingung, dass $x \ge 2$ gilt? | ||
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}[y ≥ 3\hspace{0.05cm} | \hspace{0.05cm} x ≥ 2]\ =$ { 0.667 3% } | + | ${\rm Pr}\big[y ≥ 3\hspace{0.05cm} | \hspace{0.05cm} x ≥ 2\big]\ = \ $ { 0.667 3% } |
Revision as of 13:03, 15 August 2018
Eine 2D-Zufallsgröße ist durch die nebenstehende Skizze definiert:
- Für ($x$, $y$) können nur Werte innerhalb des durch die drei Eckpunkte $(0,\ 1)$, $(4,\ 3)$ und $(4,\ 5)$ festgelegten dreieckförmigen Gebietes auftreten.
- Innerhalb des Dreiecks sind alle Zufallsgrößen $(x, \ y)$ gleichwahrscheinlich.
- Für die 2D–WDF gilt somit:
- $$f_{xy}(x,y) = A .$$
Zusätzlich ist die Gerade $x = y$ ⇒ „Winkelhalbierende” in obiger Skizze eingezeichnet ⇒ siehe Teilaufgabe (2).
Hinweis:
- Die Aufgabe gehört zum Kapitel Zweidimensionale Zufallsgrößen.
Fragebogen
Musterlösung
Die Dreiecksfläche ist $D = 0.5 \cdot 2 \cdot 4 = 4$. Da in diesem Definitionsgebiet die WDF konstant gleich $A$ ist, erhält man $A= 1/D\hspace{0.15cm}\underline{= 0.25}$.
(2) Zur Lösung gehen wir von nebenstehender Skizze aus. Das Gebiet $x>y$ liegt rechts von der Winkelhalbierenden $x=y$ und ist grün markiert.
Diese grüne Dreiecksfläche ist $D_{rm (2)} = 0.5 \cdot 1 \cdot 2 = 1 $, also genau ein Viertel der Gesamtfläche $D$ des Definitionsgebietes. Daraus folgt ${\rm Pr}(x > y)\hspace{0.15cm}\underline{= 0.25}$.
(3) Für die gesuchte Rand-WDF gilt in diesem Fall:
$$f_x(x)=\int_{-\infty}^{+\infty}f_{xy}(x,y)\, {\rm d}y=A\cdot B_y (x).$$
Hierbei bezeichnet $B_y(x)$ die Breite des Gebietes $f_{xy} \ne 0$ in $y$-Richtung beim betrachteten $x$-Wert. Es gilt: $B_y(x) = x/2$. Mit $A = 0.25$ folgt $f_{x}(x) = x/8$ für den Bereich $ 0 \le x \le 4$.
Die gesuchte Wahrscheinlichkeit entspricht der schraffierten Fläche in nebenstehender Skizze. Man erhält: $$\rm Pr(\it x\ge \rm 2) = \rm 1-\rm Pr(\it x < \rm 2) = \rm 1-\frac{1}{2}\cdot2\cdot 0.25\hspace{0.15cm}\underline{ =0.75}. $$
Zum gleichen Ergebnis gelangt man anhand der 2D-WDF: Rechts von der Senkrechten $x = 2$ liegt $3/4$ des gesamten Definitionsgebiets.
(4) Analog der Musterlösung der Teilaufgabe (3) gilt: $$f_y(y)=\int_{-\infty}^{+\infty}f_{xy}(x,y)\, {\rm d}x=A\cdot B_x (y).$$
Die Ausbreitung des WDF-Gebietes in $x$-Richtung ist für $y \le 1$ und $y \ge 5$ jeweils $0$. Das Maximum liegt bei $y=3$ und ergibt $B_x(y=3) = 2$. Dazwischen ist die Zu– und Abnahme von $B_x(y)$ linear und es ergibt sich eine dreieckförmige WDF.
Die Wahrscheinlichkeit, dass $y \ge 3$ ist, entspricht der grün schraffierten Fläche in der nebenstehenden Skizze und ergibt aufgrund der Symmetrie $${\rm Pr}(y ≥ 3)\hspace{0.15cm}\underline{ =0.5}. $$
Zum gleichen Ergebnis kommt man anhand der 2D–WDF: Oberhalb der Horizontalen $y= 3$ liegt die Hälfte des gesamten Definitionsgebietes.
(5) Wenn $y \ge 3$ ist (rot hinterlegtes Dreieck $D$), gilt stets auch $x \ge 2$ (grün umrandetes Trapez T). Das bedeutet: In diesem Beispiel ist $D$ eine Teilmenge von $T$, und es gilt: $${\rm Pr}[(x ≥ 2) ∩ (y ≥ 3)] = {\rm Pr}(y ≥ 3) \hspace{0.15cm}\underline{= 0.50}.$$
(6) Entsprechend der Lösung zur letzten Teilaufgabe (e) folgt aus $y \ge 3$ mit Sicherheit auch$x \ge 2$“. Somit ist die gesuchte bedingte Wahrscheinlichkeit: $${\rm Pr}[x ≥ 2\hspace{0.05cm} | \hspace{0.05cm} y ≥ 3]\hspace{0.15cm}\underline{= 1}.$$
(7) Diese Teilaufgabe kann man mit dem Satz von Bayes und den Ergebnissen aus (2) und (5) und lösen: $$\rm Pr(\it y \ge \rm 3\hspace{0.1cm}|\hspace{0.1cm} \it x \ge \rm 2) = \frac{ \rm Pr((\it x \ge \rm 2)\cap(\it y \ge \rm 3))} {\rm Pr(\it x \ge \rm 2)}\hspace{0.15cm}\underline{=\rm {2}/{3}}.$$
Oder anders ausgedrückt: Die Fläche $D$ des rot hinterlegten Dreiecks macht $2/3$ der Fläche des grün umrandeten Trapezes $T$ aus.