Difference between revisions of "Aufgaben:Exercise 1.6Z: Ternary Markov Source"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 3: Line 3:
 
}}
 
}}
  
[[File:Inf_Z_1_6_vers2.png|right|Ternäre Markovquelle]]
+
[[File:Inf_Z_1_6_vers2.png|right|frame|Ternäre Markovquelle]]
 
Die Grafik zeigt eine Markovquelle mit $M = 3$ Zuständen $\rm A$, $\rm B$ und $\rm C$. Für die beiden Parameter dieses Markovprozesses soll gelten:
 
Die Grafik zeigt eine Markovquelle mit $M = 3$ Zuständen $\rm A$, $\rm B$ und $\rm C$. Für die beiden Parameter dieses Markovprozesses soll gelten:
 
:$$0 \le p \le 0.5 \hspace{0.05cm},\hspace{0.2cm}0 \le q \le 1 \hspace{0.05cm}.$$
 
:$$0 \le p \le 0.5 \hspace{0.05cm},\hspace{0.2cm}0 \le q \le 1 \hspace{0.05cm}.$$
Line 11: Line 11:
 
:$$H  = 2 \cdot H_{\rm 2} - H_{\rm 1}  \hspace{0.05cm}.$$
 
:$$H  = 2 \cdot H_{\rm 2} - H_{\rm 1}  \hspace{0.05cm}.$$
  
*Nach der so genannten <i>direkten Berechnungsmethode</i> kann die Entropie aber auch wie folgt berechnet werden (insgesamt 9 Terme):
+
*Nach der <i>direkten Berechnungsmethode</i> kann die Entropie aber auch wie folgt berechnet werden (insgesamt 9 Terme):
:$$H = p_{\rm AA}  \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB}  \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} +  \ldots
+
:$$H = p_{\rm AA}  \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB}  \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} +  \ \text{...}
 
  \hspace{0.05cm}, \
 
  \hspace{0.05cm}, \
 
\text{wobei} \ p_{\rm AA} = p_{\rm A} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm},\hspace{0.2cm}
 
\text{wobei} \ p_{\rm AA} = p_{\rm A} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm},\hspace{0.2cm}
p_{\rm AB} = p_{\rm A} \cdot p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm}, \hspace{0.1cm}\ldots$$
+
p_{\rm AB} = p_{\rm A} \cdot p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm}, \ \text{...}$$
 +
 
 +
 
 +
 
 +
 
  
 
''Hinweise:''  
 
''Hinweise:''  
Line 27: Line 31:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Für welche Parameter $p$ und  $q$ ergibt sich die maximale Entropie pro Symbol?
+
{Für welche Parameter &nbsp;$p$ &nbsp;und&nbsp; $q$ ergibt sich die maximale Entropie pro Symbol?
 
|type="{}"}
 
|type="{}"}
$p \ = $ { 0.333 1% }
+
$p \ = \ $ { 0.333 1% }
$q\ = $ { 1 1% }
+
$q\ = \ $ { 1 1% }
$H_\text{max} \ = $ { 1.585 1% } $\ \rm bit/Symbol$
+
$H_\text{max} \ = \ $ { 1.585 1% } $\ \rm bit/Symbol$
  
  
{Es sei $p = 1/4$ und  $q = 1$. Welcher Wert ergibt sich in diesem Fall für die erste Entropienäherung?
+
{Es sei &nbsp;$p = 1/4$ &nbsp;und&nbsp; $q = 1$. Welcher Wert ergibt sich in diesem Fall für die erste Entropienäherung?
 
|type="{}"}
 
|type="{}"}
$H_1 = \ $ { 1.585 3% } $\ \rm bit/Symbol$
+
$H_1 = \ $ { 1.585 3% } $\ \rm bit/Symbol$
  
  
{Weiterhin gelte $p = 1/4$ und  $q = 1$. Welcher Wert ergibt sich in diesem Fall für die zweite Entropienäherung?
+
{Weiterhin gelte &nbsp;$p = 1/4$ &nbsp;und&nbsp; $q = 1$. Welcher Wert ergibt sich in diesem Fall für die zweite Entropienäherung?
 
|type="{}"}
 
|type="{}"}
$H_2 = \ $ { 1.5425 1% } $\ \rm bit/Symbol$
+
$H_2 = \ $ { 1.5425 1% } $\ \rm bit/Symbol$
  
  
{Wie groß ist die tatsächliche Quellenentropie mit $p = 1/4$ und  $q = 1$?
+
{Wie groß ist die tatsächliche Quellenentropie mit &nbsp;$p = 1/4$ &nbsp;und&nbsp; $q = 1$?
 
|type="{}"}
 
|type="{}"}
$H = \ $ { 1.5 1% } $\ \rm bit/Symbol$
+
$H = \ $ { 1.5 1% } $\ \rm bit/Symbol$
  
  
{Wie groß ist die tatsächliche Quellenentropie mit  $p = 1/2$ und  $q = 0$?
+
{Wie groß ist die tatsächliche Quellenentropie mit  &nbsp;$p = 1/2$ &nbsp;und&nbsp; $q = 0$?
 
|type="{}"}
 
|type="{}"}
$H = \ $ { 0.667 1% } $\ \rm bit/Symbol$
+
$H = \ $ { 0.667 1% } $\ \rm bit/Symbol$
  
  

Revision as of 09:44, 19 September 2018

Ternäre Markovquelle

Die Grafik zeigt eine Markovquelle mit $M = 3$ Zuständen $\rm A$, $\rm B$ und $\rm C$. Für die beiden Parameter dieses Markovprozesses soll gelten:

$$0 \le p \le 0.5 \hspace{0.05cm},\hspace{0.2cm}0 \le q \le 1 \hspace{0.05cm}.$$

Aufgrund der Markoveigenschaft dieser Quelle kann die Entropie auf unterschiedliche Weise ermittelt werden:

  • Man berechnet die beiden ersten Entropienäherungen $H_1$ und $H_2$. Dann gilt für die tatsächliche Entropie:
$$H = 2 \cdot H_{\rm 2} - H_{\rm 1} \hspace{0.05cm}.$$
  • Nach der direkten Berechnungsmethode kann die Entropie aber auch wie folgt berechnet werden (insgesamt 9 Terme):
$$H = p_{\rm AA} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + \ \text{...} \hspace{0.05cm}, \ \text{wobei} \ p_{\rm AA} = p_{\rm A} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm},\hspace{0.2cm} p_{\rm AB} = p_{\rm A} \cdot p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm}, \ \text{...}$$



Hinweise:


Fragebogen

1

Für welche Parameter  $p$  und  $q$ ergibt sich die maximale Entropie pro Symbol?

$p \ = \ $

$q\ = \ $

$H_\text{max} \ = \ $

$\ \rm bit/Symbol$

2

Es sei  $p = 1/4$  und  $q = 1$. Welcher Wert ergibt sich in diesem Fall für die erste Entropienäherung?

$H_1 = \ \ $

$\ \rm bit/Symbol$

3

Weiterhin gelte  $p = 1/4$  und  $q = 1$. Welcher Wert ergibt sich in diesem Fall für die zweite Entropienäherung?

$H_2 = \ \ $

$\ \rm bit/Symbol$

4

Wie groß ist die tatsächliche Quellenentropie mit  $p = 1/4$  und  $q = 1$?

$H = \ \ $

$\ \rm bit/Symbol$

5

Wie groß ist die tatsächliche Quellenentropie mit  $p = 1/2$  und  $q = 0$?

$H = \ \ $

$\ \rm bit/Symbol$


Musterlösung

Hinweis: Aus Platzgründen verwenden wir in der Musterlösung „ld” anstelle von „log2”.

(1)  Die maximale Entropie ergibt sich dann, wenn die Symbole $\rm A$, $\rm B$ und $\rm C$ gleichwahrscheinlich und die Symbole innerhalb der Folge statistisch voneinander unabhängig sind. Dann muss gelten:

  • $p_{\rm A} = p_{\rm A|A} = p_{\rm A|B} = p_{\rm A|C} = 1/3$,
  • $p_{\rm B} = p_{\rm B|A} = p_{\rm B|B} = p_{\rm B|C} = 1/3$,
  • $p_{\rm C} = p_{\rm C|A} = p_{\rm C|B} = p_{\rm C|C} = 1/3$.


Daraus lassen sich die gesuchten Werte bestimmen:

  • Beispielsweise erhält man aus $p_{\rm C|C} = 1/3$ der Wert $p \hspace{0.15cm}\underline{= 1/3}$.
  • Berücksichtigt man noch die Beziehung $p_{\rm A|A} = p \cdot q$, so folgt $q \hspace{0.15cm}\underline{= 1}$.
  • Damit ergibt sich die maximale Entropie $H_\text{max} ={\rm ld} \ 3\hspace{0.15cm}\underline{= 1.585\ \rm bit/Symbol}$.


Übergangsdiagramm für p = 1/4, q = 1

(2)  Mit den Parameterwerten Übergangsdiagramm für $p = 1/4$ und $q = 1$ ergibt sich das nebenstehende Übergangsdiagramm, das folgende Symmetrien aufweist:

  • $p_{\rm A|A} = p_{\rm B|B} = p_{\rm C|C} = 1/4$ (rot markiert),
  • $p_{\rm A|B} = p_{\rm B|C} = p_{\rm C|A} = 1/2$ (grün markiert),
  • $p_{\rm A|C} = p_{\rm B|A} = p_{\rm C|CB} = 1/4$ (blau markiert).

Es ist offensichtlich, dass die Symbolwahrscheinlichkeiten alle gleich sind:

$$p_{\rm A} = p_{\rm B} = p_{\rm C} = 1/3 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_1 = {\rm ld}\hspace{0.1cm} 3 \hspace{0.15cm} \underline {= 1.585 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

(3)  Für die zweite Entropienäherung benötigt man die $3^2 = 9$ Verbundwahrscheinlichkeiten. Mit dem Ergebnis der Teilaufgabe (2) erhält man hierfür:

$$p_{\rm AA} = p_{\rm BB}= p_{\rm CC}= p_{\rm AC}=p_{\rm BA}=p_{\rm CB}=1/12 \hspace{0.05cm},\hspace{0.5cm} p_{\rm AB} = p_{\rm BC}=p_{\rm CA}=1/6$$
$$\Rightarrow \hspace{0.2cm} H_2 = \frac{1}{2} \cdot \left [ 6 \cdot \frac{1}{12} \cdot {\rm ld}\hspace{0.1cm} 12 + 3 \cdot \frac{1}{6} \cdot {\rm ld}\hspace{0.1cm} 6 \right ] = \frac{1}{4} \cdot {\rm ld}\hspace{0.1cm} 4 + \frac{1}{4} \cdot {\rm ld}\hspace{0.1cm} 3 + \frac{1}{4} \cdot {\rm ld}\hspace{0.1cm} 2 + \frac{1}{4} \cdot {\rm ld}\hspace{0.1cm} 3 = \frac{3}{4} + \frac{{\rm ld}\hspace{0.1cm} 3}{2} \hspace{0.15cm} \underline {= 1.5425 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

(4)  Aufgrund der Markoveigenschaft der Quelle gilt

$$H = 2 \cdot H_2 - H_1 = [ {3}/{2} + {\rm ld}\hspace{0.1cm} 3] - {\rm ld}\hspace{0.1cm} 3\hspace{0.15cm} \underline {= 1.5 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

Zum gleichen Ergebnis würde man mit folgender Rechnung kommen:

$$H= p_{\rm AA} \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + ... \hspace{0.1cm}= 6 \cdot \frac{1}{12} \cdot {\rm ld}\hspace{0.1cm} 4 + 3 \cdot \frac{1}{16} \cdot {\rm ld}\hspace{0.1cm} 2 \hspace{0.15cm} \underline {= 1.5 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$
Übergangsdiagramm für p = 1/4, q = 0

(5)  Aus dem nebenstehendenm Übergangsdiagramm mit den aktuellen Parametern erkennt man, dass bei Stationarität $p_{\rm B} = 0$ gelten wird, da $\rm B$ höchstens zum Starzeitpunkt einmal auftreten kann. Es liegt also eine binäre Markovkette mit den Symbolen $\rm A$ und $\rm C$ vor. Die Symbolwahrscheinlichkeiten ergeben sich zu:

$$p_{\rm A} = 0.5 \cdot p_{\rm C} \hspace{0.05cm}, \hspace{0.2cm}p_{\rm A} + p_{\rm C} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm A} = 1/3 \hspace{0.05cm}, \hspace{0.2cm} p_{\rm C} = 2/3\hspace{0.05cm}. $$

Damit erhält man folgende Wahrscheinlichkeiten:

$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} = \hspace{0.1cm}0\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AA} = 0 \hspace{0.05cm},$$
$$ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CA} = p_{\rm C} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3 \hspace{0.05cm},\hspace{0.2cm}{\rm ld}\hspace{0.1cm}(1/p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} )= 1\hspace{0.05cm},$$
$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} =1\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AC} = p_{\rm A} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} = 1/3 \cdot 1 = 1/3 \hspace{0.05cm},\hspace{0.61cm}{\rm ld}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} )= 0\hspace{0.05cm},$$
$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CC} = p_{\rm C} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3\hspace{0.05cm},\hspace{0.2cm}{\rm ld}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} )= 1 $$
$$\Rightarrow \hspace{0.25cm} H = p_{\rm AA} \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} +p_{\rm CA} \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C}}+ p_{\rm AC} \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm CC} \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C}}= 0 + 1/3 \cdot 1 + 1/3 \cdot 0 + 1/3 \cdot 1 \hspace{0.15cm} \underline {= 0.667 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$