Difference between revisions of "Aufgaben:Exercise 4.5Z: Again Mutual Information"

From LNTwww
Line 14: Line 14:
 
:$$h(XY)  =    {\rm log} \hspace{0.1cm} (\hspace{0.05cm}F \hspace{0.05cm}) =  {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A \cdot B \hspace{0.05cm})\hspace{0.05cm}.$$
 
:$$h(XY)  =    {\rm log} \hspace{0.1cm} (\hspace{0.05cm}F \hspace{0.05cm}) =  {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A \cdot B \hspace{0.05cm})\hspace{0.05cm}.$$
 
In dieser Aufgabe sind nun die Parameterwerte $A = {\rm e}^{-2}$ und $B = {\rm e}^{0.5}$ zu verwenden.  
 
In dieser Aufgabe sind nun die Parameterwerte $A = {\rm e}^{-2}$ und $B = {\rm e}^{0.5}$ zu verwenden.  
 
  
 
Entsprechend dem obigen Schaubild sollen nun auch die bedingten differentiellen Entropien $h(Y|X)$  und $h(X|Y)$ ermittelt und deren Bezug zur Transinformation $I(X; Y)$ angegeben  werden.
 
Entsprechend dem obigen Schaubild sollen nun auch die bedingten differentiellen Entropien $h(Y|X)$  und $h(X|Y)$ ermittelt und deren Bezug zur Transinformation $I(X; Y)$ angegeben  werden.

Revision as of 09:15, 18 October 2018

Gegebene Verbund–WDF und Schaubild der differentiellen Entropien

Die Grafik zeigt oben die in dieser Aufgabe zu betrachtende Verbund–WDF $f_{XY}(x, y)$, die identisch ist mit der „grünen” Konstellation in der Aufgabe 4.5..

  • $f_{XY}(x, y)$ ist in der $y$–Richtung um den Faktor $3$ vergrößert.
  • Im grün hinterlegten Definitionsgebiet ist die Verbund–WDF konstant gleich $C = 1/F$, wobei $F$ die Fläche des Parallelogramms angibt.


In der Aufgabe 4.5 wurden folgende differentielle Entropien berechnet:

$$h(X) \ = \ {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A\hspace{0.05cm})\hspace{0.05cm},$$
$$h(Y) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}B \cdot \sqrt{ {\rm e } } \hspace{0.05cm})\hspace{0.05cm},$$
$$h(XY) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}F \hspace{0.05cm}) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A \cdot B \hspace{0.05cm})\hspace{0.05cm}.$$

In dieser Aufgabe sind nun die Parameterwerte $A = {\rm e}^{-2}$ und $B = {\rm e}^{0.5}$ zu verwenden.

Entsprechend dem obigen Schaubild sollen nun auch die bedingten differentiellen Entropien $h(Y|X)$ und $h(X|Y)$ ermittelt und deren Bezug zur Transinformation $I(X; Y)$ angegeben werden.



Hinweise:

  • Die Aufgabe gehört zum Kapitel  AWGN–Kanalkapazität bei wertkontinuierlichem Eingang.
  • Sollen die Ergebnisse in „nat” angegeben werden, so erreicht man dies mit „log”  ⇒  „ln”.
  • Sollen die Ergebnisse in „bit” angegeben werden, so erreicht man dies mit „log”  ⇒  „log2”.



Fragebogen

1

Geben Sie die folgenden informationstheoretischen Größen in „nat” an:

$h(X) \ = \ $

$\ \rm nat$
$h(Y) \ \hspace{0.03cm} = \ $

$\ \rm nat$
$h(XY)\ \hspace{0.17cm} = \ $

$\ \rm nat$
$I(X;Y)\ = \ $

$\ \rm nat$

2

Wie lauten die gleichen Größen mit der Pseudo–Einheit „bit”?

$h(X) \ = \ $

$\ \rm bit$
$h(Y) \ \hspace{0.03cm} = \ $

$\ \rm bit$
$h(XY)\ \hspace{0.17cm} = \ $

$\ \rm bit$
$I(X;Y)\ = \ $

$\ \rm bit$

3

Berechnen Sie die bedingte differentielle Entropie $h(Y|X)$.

$h(Y|X) \ = \ $

$\ \rm nat$
$h(Y|X) \ = \ $

$\ \rm bit$

4

Berechnen Sie die bedingte differentielle Entropie $h(X|Y)$.

$h(X|Y) \ = \ $

$\ \rm nat$
$h(X|Y) \ = \ $

$\ \rm bit$

5

Welche der folgenden Größen sind niemals negativ?

Sowohl  $H(X)$  als auch  $H(Y)$  im wertdiskreten Fall.
Die Transinformation  $I(X; Y)$  im wertdiskreten Fall.
Die Transinformation  $I(X; Y)$  im wertkontinuierlichen Fall.
Sowohl  $h(X)$  als auch  $h(Y)$  im wertkontinuierlichen Fall.
Sowohl  $h(X|Y)$  als auch  $h(Y|X)$  im wertkontinuierlichen Fall.
Die Verbundentropie  $h(XY)$  im wertkontinuierlichen Fall.


Musterlösung

(1)  Da die Ergebnisse in „nat” gefordert sind, bietet sich die Verwendung des natürlichen Logarithmus an:

  • Die Zufallsgröße X ist gleichverteilt zwischen 0 und 1/e2 = e–2:
$$h(X) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}{\rm e}^{-2}\hspace{0.05cm}) \hspace{0.15cm}\underline{= -2\,{\rm nat}}\hspace{0.05cm}. $$
  • Die Zufallsgröße Y ist dreieckverteilt zwischen ±e0.5:
$$h(Y) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}\sqrt{ {\rm e} } \cdot \sqrt{ {\rm e} } ) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}{ { \rm e } } \hspace{0.05cm}) \hspace{0.15cm}\underline{= +1\,{\rm nat}}\hspace{0.05cm}.$$
  • Die Fläche des Parallelogramms ergibt sich zu
$$F = A \cdot B = {\rm e}^{-2} \cdot {\rm e}^{0.5} = {\rm e}^{-1.5}\hspace{0.05cm}.$$

Damit hat die 2D–WDF im grün hinterlegten Bereich die konstante Höhe C = 1/F = e1.5 und man erhält für die Verbundentropie:

$$h(XY) = {\rm ln} \hspace{0.1cm} (F) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}{\rm e}^{-1.5}\hspace{0.05cm}) \hspace{0.15cm}\underline{= -1.5\,{\rm nat}}\hspace{0.05cm}.$$

Daraus ergibt sich für die Transinformation:

$$I(X;Y) = h(X) + h(Y) - h(XY) = -2 \,{\rm nat} + 1 \,{\rm nat} - (-1.5 \,{\rm nat} ) \hspace{0.15cm}\underline{= 0.5\,{\rm nat}}\hspace{0.05cm}.$$


(2)  Allgemein gilt der Zusammenhang $\log_2(x) = \ln(x)/\ln(2)$. Damit erhält man mit den Ergebnissen der Teilaufgabe (1):

$$h(X) \ = \ \frac{-2\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= -2.886\,{\rm bit}}\hspace{0.05cm},$$
$$h(Y) \ = \ \frac{+1\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= +1.443\,{\rm bit}}\hspace{0.05cm},$$
$$h(XY) \ = \ \frac{-1.5\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= -2.164\,{\rm bit}}\hspace{0.05cm},$$
$$I(X;Y) \ = \ \frac{0.5\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= 0.721\,{\rm bit}}\hspace{0.05cm}.$$

Oder auch:

$$I(X;Y) = -2.886 \,{\rm bit} + 1.443 \,{\rm bit}+ 2.164 \,{\rm bit}{= 0.721\,{\rm bit}}\hspace{0.05cm}.$$


(3)  Die Transinformation kann auch in der Form I(X; Y) = h(Y) – h(Y|X) geschrieben werden:

$$h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = h(Y) - I(X;Y) = 1 \,{\rm nat} - 0.5 \,{\rm nat} \hspace{0.15cm}\underline{= 0.5\,{\rm nat}= 0.721\,{\rm bit}}\hspace{0.05cm}.$$


(4)  Für die differentielle Rückschlussentropie gilt entsprechend:

$$h(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = h(X) - I(X;Y) = -2 \,{\rm nat} - 0.5 \,{\rm nat} \hspace{0.15cm}\underline{= -2.5\,{\rm nat}= -3.607\,{\rm bit}}\hspace{0.05cm}.$$

Alle hier berechneten Größen sind in der folgenden Grafik zusammengestellt. Pfeile nach oben kennzeichnen einen positiven Beitrag, Pfeile nach unten einen negativen.

Zusammenfassung aller Ergebnisse dieser Aufgabe

(5)  Richtig sind die Lösungsvorschläge 1 bis 3. Nochmals zur Verdeutlichung:

  • Für die Transinformation gilt stets $I(X;Y) \ge 0$.
  • Im wertdiskreten Fall gibt es keine negative Entropie, jedoch im wertkontinuierlichen.