Difference between revisions of "Aufgaben:Exercise 3.5Z: Application of the Residue Theorem"
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Line 4: | Line 4: | ||
[[File:P_ID1781__LZI_Z_3_5.png|right|frame|Sechs verschiedene Pol–Nullstellen–Konfigurationen]] | [[File:P_ID1781__LZI_Z_3_5.png|right|frame|Sechs verschiedene Pol–Nullstellen–Konfigurationen]] | ||
− | Die Spektralfunktion $Y_{\rm L}(p)$ sei in Pol–Nullstellen–Form gegeben, gekennzeichnet durch | + | Die Spektralfunktion $Y_{\rm L}(p)$ sei in Pol–Nullstellen–Form gegeben, gekennzeichnet durch |
*$Z$ Nullstellen $p_{{\rm o}i}$, | *$Z$ Nullstellen $p_{{\rm o}i}$, | ||
*$N$ Pole $p_{{\rm x}i}$, sowie | *$N$ Pole $p_{{\rm x}i}$, sowie | ||
Line 10: | Line 10: | ||
− | Betrachtet werden im Folgenden die in der Grafik dargestellten Konfigurationen. Es gelte stets $K= 2$. | + | Betrachtet werden im Folgenden die in der Grafik dargestellten Konfigurationen. Es gelte stets $K= 2$. |
− | Für den Fall, dass die Anzahl $Z$ der Nullstellen kleiner als die Anzahl $N$ der Pole ist, kann das zugehörige Zeitsignal $y(t)$ durch Anwendung des [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatzes]] direkt ermittelt werden. | + | Für den Fall, dass die Anzahl $Z$ der Nullstellen kleiner als die Anzahl $N$ der Pole ist, kann das zugehörige Zeitsignal $y(t)$ durch Anwendung des [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatzes]] direkt ermittelt werden. |
In diesem Fall gilt | In diesem Fall gilt | ||
Line 20: | Line 20: | ||
\bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right | \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right | ||
\} \hspace{0.05cm}.$$ | \} \hspace{0.05cm}.$$ | ||
− | $I$ gibt die Anzahl der unterscheidbaren Pole an | + | $I$ gibt die Anzahl der unterscheidbaren Pole an; bei allen vorgegebenen Konstellationen ist $I = N$. |
Line 28: | Line 28: | ||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]]. | + | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]]. |
− | *Ist das Zeitsignal $y(t)$ komplex, so kann $Y_{\rm L}(p)$ nicht als Schaltung realisiert werden. Die Anwendung des Residuensatzes ist aber trotzdem möglich. | + | *Ist das Zeitsignal $y(t)$ komplex, so kann $Y_{\rm L}(p)$ nicht als Schaltung realisiert werden. Die Anwendung des Residuensatzes ist aber trotzdem möglich. |
− | *Die komplexe Frequenz $p$, die Nullstellen $p_{{\rm o}i}$ sowie die Pole $p_{{\rm | + | *Die komplexe Frequenz $p$, die Nullstellen $p_{{\rm o}i}$ sowie die Pole $p_{{\rm x}i}$ beschreiben in dieser Aufgabe jeweils normierte Größen ohne Einheit. |
+ | *Damit ist auch die Zeit $t$ dimensionslos. | ||
Line 37: | Line 38: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Bei welchen Konfigurationen lässt sich der Residuensatz nicht direkt anwenden? | + | {Bei welchen Konfigurationen lässt sich der Residuensatz <u>nicht direkt</u> anwenden? |
|type="[]"} | |type="[]"} | ||
− | - Konfiguration $\rm A$, | + | - Konfiguration $\rm A$, |
− | + Konfiguration $\rm B$, | + | + Konfiguration $\rm B$, |
− | - Konfiguration $\rm C$, | + | - Konfiguration $\rm C$, |
− | + Konfiguration $\rm D$, | + | + Konfiguration $\rm D$, |
− | - Konfiguration $\rm E$, | + | - Konfiguration $\rm E$, |
− | + Konfiguration $\rm F$. | + | + Konfiguration $\rm F$. |
− | {Berechnen Sie $y(t)$ für die Konfiguration $\rm A$ mit $K= 2$ und $p_{\rm x} = -1$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$? | + | {Berechnen Sie $y(t)$ für die Konfiguration $\rm A$ mit $K= 2$ und $p_{\rm x} = -1$. <br>Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$? |
|type="{}"} | |type="{}"} | ||
$\ {\rm Re}\{y(t = 1)\} \ = \ $ { 0.736 3% } | $\ {\rm Re}\{y(t = 1)\} \ = \ $ { 0.736 3% } | ||
Line 53: | Line 54: | ||
− | {Berechnen Sie $y(t)$ für die Konfiguration $\rm C$ mit $K= 2$ und $p_{\rm x} = -0.2 + {\rm j} \cdot 1.5\pi$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$? | + | {Berechnen Sie $y(t)$ für die Konfiguration $\rm C$ mit $K= 2$ und $p_{\rm x} = -0.2 + {\rm j} \cdot 1.5\pi$. <br>Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$? |
|type="{}"} | |type="{}"} | ||
$\ {\rm Re}\{y(t = 1)\} \ = \ $ { 0. } | $\ {\rm Re}\{y(t = 1)\} \ = \ $ { 0. } | ||
Line 59: | Line 60: | ||
− | {Welcher Signalwert $y(t = 1)$ ergibt sich bei der Konstellation $\rm E$ mit $K= 2$ und zwei Polstellen bei $p_{\rm x} = -0.2 \pm {\rm j} \cdot 1.5\pi$? | + | {Welcher Signalwert $y(t = 1)$ ergibt sich bei der Konstellation $\rm E$ mit $K= 2$ und zwei Polstellen bei $p_{\rm x} = -0.2 \pm {\rm j} \cdot 1.5\pi$? |
|type="{}"} | |type="{}"} | ||
$\ {\rm Re}\{y(t = 1)\} \ = \ $ { -0.357--0.337 } | $\ {\rm Re}\{y(t = 1)\} \ = \ $ { -0.357--0.337 } |
Revision as of 16:23, 27 November 2018
Die Spektralfunktion $Y_{\rm L}(p)$ sei in Pol–Nullstellen–Form gegeben, gekennzeichnet durch
- $Z$ Nullstellen $p_{{\rm o}i}$,
- $N$ Pole $p_{{\rm x}i}$, sowie
- die Konstante $K$.
Betrachtet werden im Folgenden die in der Grafik dargestellten Konfigurationen. Es gelte stets $K= 2$.
Für den Fall, dass die Anzahl $Z$ der Nullstellen kleiner als die Anzahl $N$ der Pole ist, kann das zugehörige Zeitsignal $y(t)$ durch Anwendung des Residuensatzes direkt ermittelt werden.
In diesem Fall gilt
- $$y(t) = \sum_{i=1}^{I} \left \{ Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right \} \hspace{0.05cm}.$$
$I$ gibt die Anzahl der unterscheidbaren Pole an; bei allen vorgegebenen Konstellationen ist $I = N$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Laplace–Rücktransformation.
- Ist das Zeitsignal $y(t)$ komplex, so kann $Y_{\rm L}(p)$ nicht als Schaltung realisiert werden. Die Anwendung des Residuensatzes ist aber trotzdem möglich.
- Die komplexe Frequenz $p$, die Nullstellen $p_{{\rm o}i}$ sowie die Pole $p_{{\rm x}i}$ beschreiben in dieser Aufgabe jeweils normierte Größen ohne Einheit.
- Damit ist auch die Zeit $t$ dimensionslos.
Fragebogen
Musterlösung
- Voraussetzung für die Anwendung des Residuensatzes ist, dass es weniger Nullstellen als Pole gibt, das heißt, es muss $Z < N$ gelten.
- Diese Voraussetzung ist bei den Konfigurationen $\rm B$, $\rm D$ und $\rm F$ nicht gegeben.
- Hier muss zunächst eine Partialbruchzerlegung vorgenommen werden, zum Beispiel für die Konfiguration $\rm B$ mit $p_x = -1$:
- $$Y_{\rm L}(p)= \frac {p} {p +1}= 1-\frac {1} {p +1} \hspace{0.05cm} .$$
(2) Mit $Y_{\rm L}(p) = 2/(p+1)$ ergibt sich aus dem Residuensatz mit $I=1$:
- $$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= 2 \cdot {\rm e}^{- \hspace{0.05cm}t}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y(t=1) =\frac{2}{\rm e} \hspace{0.15cm}\underline{ \approx 0.736 \hspace{0.15cm}{\rm (rein\hspace{0.15cm}reell)}} \hspace{0.05cm} .$$
(3) Bei gleicher Vorgehensweise wie in der Teilaufgabe (2) erhält man nun:
- $$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}-(0.2 \hspace{0.05cm}+ \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}1.5 \pi) \hspace{0.05cm} \cdot \hspace{0.05cm}t} = 2 \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t}\cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.08cm}\cdot \hspace{0.05cm}1.5 \pi\hspace{0.05cm}\cdot \hspace{0.05cm}t} \hspace{0.05cm} .$$
Aufgrund des zweiten Terms handelt es sich um ein komplexes Signal, dessen Phase in mathematisch positiver Richtung (entgegen dem Uhrzeigersinn) dreht. Für $t=1$ gilt:
- $$y(t = 1) = 2 \cdot {\rm e}^{\hspace{0.05cm}-0.2} \cdot \left [ \cos(1.5 \pi) + {\rm j} \cdot \sin(1.5 \pi) \right ]= - {\rm j} \cdot 1.638\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Re}\{y(t = 1)\} \hspace{0.15cm}\underline{ = 0},\hspace{0.2cm} {\rm Im}\{y(t = 1)\} \hspace{0.15cm}\underline{=- 1.638} \hspace{0.05cm} .$$
Die linke Grafik zeigt das komplexe Signal für einen Pol bei $p_x = -2 + {\rm j} \cdot 1.5 \pi$ . Rechts daneben sieht man das dazu konjugiert–komplexe Signal, wenn der Pol bei $p_x = -2 - {\rm j} \cdot 1.5 \pi$.
(4) Nun gilt $I=2$. Die Residien von $p_{x1}$ bzw. $p_{x2}$ liefern:
- $$y_1(t) = \frac {K \cdot (p-p_{{\rm x}1})} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}= \frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot {\rm e}^{\hspace{0.05cm}p_{{\rm x}1} \hspace{0.05cm}t} \hspace{0.05cm} ,$$
- $$ y_2(t) = \frac {K } { p_{{\rm x}2}-p_{{\rm x}1}} \cdot {\rm e}^{\hspace{0.05cm}p_{{\rm x}2} \hspace{0.05cm}t}= -\frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot {\rm e}^{-p_{{\rm x}1} \hspace{0.05cm}t}$$
- $$\Rightarrow \hspace{0.3cm}y(t)= y_1(t)+y_2(t) = \frac {2 \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t}}{{\rm j} \cdot 3 \pi} \cdot \left [ \cos(.) + {\rm j} \cdot \sin(.) - \cos(.) + {\rm j} \cdot \sin(.)\right ]= \frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t}\cdot \sin(1.5\pi \cdot t)$$
- $$\Rightarrow \hspace{0.3cm}y(t=1)= -\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t} \hspace{0.15cm}\underline{= -0.347} \hspace{0.05cm} .$$
Die Grafik zeigt den (rein reellen) Signalverlauf $y(t)$ für diese Konfiguration.