Difference between revisions of "Aufgaben:Exercise 2.12: Non-coherent Demodulation"
Line 28: | Line 28: | ||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Weitere_AM–Varianten| | + | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Weitere_AM–Varianten|Weitere AM–Variantenn]]. |
*Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Weitere_AM–Varianten#Inkoh.C3.A4rente_.28nichtkoh.C3.A4rente.29_Demodulation|Inkohärente (nichtkohärente) Demodulation]]. | *Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Weitere_AM–Varianten#Inkoh.C3.A4rente_.28nichtkoh.C3.A4rente.29_Demodulation|Inkohärente (nichtkohärente) Demodulation]]. | ||
Line 41: | Line 41: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie lauten die Signale $b_1(t)$ und $b_2(t)$ in den beiden Zweigen – jeweils nach Multiplizierer und Tiefpass? Welche Aussagen treffen zu? | + | {Wie lauten die Signale $b_1(t)$ und $b_2(t)$ in den beiden Zweigen – jeweils nach Multiplizierer und Tiefpass? Welche Aussagen treffen zu? |
|type="[]"} | |type="[]"} | ||
+ $b_1(t) = q(t) · \cos(Δϕ_{\rm T})$. | + $b_1(t) = q(t) · \cos(Δϕ_{\rm T})$. | ||
Line 49: | Line 49: | ||
- $b_1(t) = b_2(t) = q(t)$. | - $b_1(t) = b_2(t) = q(t)$. | ||
− | {Welche Werte $b_{\rm min}$ und $b_{\rm max}$ nimmt das Signal $b(t)$ an, wenn am Eingang das unipolare Quellensignal $q_1(t)$ anliegt? | + | {Welche Werte $b_{\rm min}$ und $b_{\rm max}$ nimmt das Signal $b(t)$ an, wenn am Eingang das unipolare Quellensignal $q_1(t)$ anliegt? |
|type="{}"} | |type="{}"} | ||
$b_{\rm min} \ = \ $ { 0. } | $b_{\rm min} \ = \ $ { 0. } | ||
$b_{\rm max} \ = \ $ { 9 3% } | $b_{\rm max} \ = \ $ { 9 3% } | ||
− | {Wie muss die Kennlinie $v = g(b)$ gewählt werden, damit $v(t) = q(t)$ gilt? | + | {Wie muss die Kennlinie $v = g(b)$ gewählt werden, damit $v(t) = q(t)$ gilt? |
|type="[]"} | |type="[]"} | ||
- $v=g(b) = b^2$. | - $v=g(b) = b^2$. | ||
Line 61: | Line 61: | ||
− | {Welche Werte $b_{\rm min}$ und $b_{\rm max}$ nimmt das Signal $b(t)$ an, wenn am Eingang das bipolare Quellensignal $q_2(t)$ anliegt? | + | {Welche Werte $b_{\rm min}$ und $b_{\rm max}$ nimmt das Signal $b(t)$ an, wenn am Eingang das bipolare Quellensignal $q_2(t)$ anliegt? |
|type="{}"} | |type="{}"} | ||
$b_{\rm min} \ = \ $ { 9 3% } | $b_{\rm min} \ = \ $ { 9 3% } |
Revision as of 17:03, 17 December 2018
Wir betrachten ein AM–moduliertes Signal:
- $$ s(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Den Empfänger erreicht aufgrund der Kanallaufzeit das Signal
- $$ r(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \hspace{0.05cm}.$$
Die nebenstehende Anordnung erlaubt eine perfekte Demodulation – das heißt $v(t) = q(t)$ – ohne Kenntnis der Phase $Δϕ_T$, allerdings nur dann, wenn das Quellensignal $q(t)$ gewisse Voraussetzungen erfüllt.
Die beiden empfängerseitigen Trägersignale lauten:
- $$ z_{\rm 1, \hspace{0.08cm}E}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm},$$
- $$ z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
$\rm TP_1$ und $\rm TP_2$ bezeichnen zwei ideale Tiefpässe, deren Grenzfrequenz jeweils gleich der Trägerfrequenz $f_{\rm T}$ ist. Die nichtlineare Funktion $v = g(b)$ soll im Rahmen dieser Aufgabe ermittelt werden.
Als (digitale) Quellensignale werden betrachtet:
- das unipolare Rechtecksgnal $q_1(t)$ mit den dimensionslosen Amplitudenwerten $0$ und $3$,
- das bipolare Rechtecksignal $q_2(t)$ mit den dimensionslosen Amplitudenwerten $±3$.
Diese beiden Signale ergeben hinsichtlich $s(t)$ ein ASK–Signal bzw. ein BPSK–Signal.
Hinweise:
- Die Aufgabe gehört zum Kapitel Weitere AM–Variantenn.
- Bezug genommen wird insbesondere auf die Seite Inkohärente (nichtkohärente) Demodulation.
- Gegeben sind folgende trigonometrischen Umformungen:
- $$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$
- $$ b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$
Richtig sind somit die erste und die vierte Antwort.
(2) Die Summe der Quadrate der beiden Teilsignale ergibt:
- $$ b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.$$
Die möglichen Amplitudenwerte sind somit: $b_{\rm min}\hspace{0.15cm}\underline{ = 0},\hspace{0.3cm} b_{\rm max}\hspace{0.15cm}\underline{ =9}.$
(3) Richtig ist der zweite Lösungsvorschlag:
- $$v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.$$
(4) Das Ergebnis $b(t) = q^2(t)$ – siehe Teilaufgabe (2) – führt hier zum Ergebnis: $b_{\rm min}\hspace{0.15cm}\underline{ = 9},\hspace{0.3cm} b_{\rm max}\hspace{0.15cm}\underline{ =9}.$
Dies zeigt, dass der hier betrachtete Demodulator nur dann funktioniert, wenn für alle Zeiten $q(t) ≥ 0$ oder $q(t) ≤ 0$ gilt und dies dem Empfänger auch bekannt ist.