Difference between revisions of "Aufgaben:Exercise 3.2: Spectrum with Angle Modulation"
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Line 8: | Line 8: | ||
:q(t)=2V⋅sin(2π⋅3kHz⋅t), | :q(t)=2V⋅sin(2π⋅3kHz⋅t), | ||
* Sendesignal: | * Sendesignal: | ||
− | :$$s(t) = 1\,{\rm V} \cdot \cos | + | :$$s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + K_{\rm M} \cdot q(t)\big ]\hspace{0.05cm},$$ |
− | * idealer Kanal | + | * Empfangssignal (idealer Kanal: |
− | :$$r(t) = s(t) = 1\,{\rm V} \cdot \cos | + | :$$r(t) = s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + \phi(t)\big ]\hspace{0.05cm},$$ |
− | * idealer Demodulator | + | * idealer Demodulator: |
:v(t)=1KM⋅ϕ(t). | :v(t)=1KM⋅ϕ(t). | ||
Die Grafik zeigt die Besselfunktionen erster Art und ''n''-ter Ordnung in tabellarischer Form. | Die Grafik zeigt die Besselfunktionen erster Art und ''n''-ter Ordnung in tabellarischer Form. | ||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]]. | + | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]]. |
− | *Bezug genommen wird insbesondere auf die Seiten [[Modulationsverfahren/Phasenmodulation_(PM)#Spektralfunktion_eines_phasenmodulierten_Sinussignals|Spektralfunktion eines phasenmodulierten Sinussignals]] sowie [[Modulationsverfahren/Phasenmodulation_(PM)#Interpretation_des_Besselspektrums|Interpretation des Besselspektrums]]. | + | *Bezug genommen wird insbesondere auf die Seiten [[Modulationsverfahren/Phasenmodulation_(PM)#Spektralfunktion_eines_phasenmodulierten_Sinussignals|Spektralfunktion eines phasenmodulierten Sinussignals]] sowie [[Modulationsverfahren/Phasenmodulation_(PM)#Interpretation_des_Besselspektrums|Interpretation des Besselspektrums]]. |
Line 27: | Line 30: | ||
<quiz display=simple> | <quiz display=simple> | ||
{Welches Modulationsverfahren liegt hier vor? | {Welches Modulationsverfahren liegt hier vor? | ||
− | |type=" | + | |type="()"} |
- Amplitudenmodulation. | - Amplitudenmodulation. | ||
+ Phasenmodulation. | + Phasenmodulation. | ||
- Frequenzmodulation. | - Frequenzmodulation. | ||
− | {Welches Modulationsverfahren würden Sie wählen, wenn die Kanalbandbreite nur BK=10 kHz betragen würde? | + | {Welches Modulationsverfahren würden Sie wählen, wenn die Kanalbandbreite nur BK=10 kHz betragen würde? |
− | |type=" | + | |type="()"} |
+ Amplitudenmodulation. | + Amplitudenmodulation. | ||
- Phasenmodulation. | - Phasenmodulation. | ||
- Frequenzmodulation. | - Frequenzmodulation. | ||
− | {Wie ist die Modulatorkonstante KM zu wählen, damit der Phasenhub η = 1 beträgt? | + | {Wie ist die Modulatorkonstante K_{\rm M} zu wählen, damit der Phasenhub η = 1 beträgt? |
|type="{}"} | |type="{}"} | ||
K_{\rm M} \ = \ { 0.5 3% } \ \rm 1/V | K_{\rm M} \ = \ { 0.5 3% } \ \rm 1/V | ||
− | {Berechnen Sie das Spektrum S_{\rm TP}(f) des äquivalenten Tiefpass–Signals s_{\rm TP}(t). | + | {Berechnen Sie das Spektrum S_{\rm TP}(f) des äquivalenten Tiefpass–Signals s_{\rm TP}(t). |
− | <br>Wie groß sind die Gewichte der Spektrallinien bei f = 0 und f = -3 \ \rm kHz? | + | <br>Wie groß sind die Gewichte der Spektrallinien bei f = 0 und f = -3 \ \rm kHz? |
|type="{}"} | |type="{}"} | ||
S_{\rm TP}(f = 0)\ = \ { 0.765 3% } \ \rm V | S_{\rm TP}(f = 0)\ = \ { 0.765 3% } \ \rm V | ||
S_{\rm TP}(f = -3\ \rm kHz) \ = \ { -0.453--0.427 } \ \rm V | S_{\rm TP}(f = -3\ \rm kHz) \ = \ { -0.453--0.427 } \ \rm V | ||
− | {Berechnen Sie die Spektren des analytischen Signals s_{\rm +}(t)sowie des physikalischen Signals s(t). | + | {Berechnen Sie die Spektren des analytischen Signals s_{\rm +}(t) sowie des physikalischen Signals s(t). |
− | <br>Wie groß sind die Gewichte der Spektrallinien bei f = 97 \ \rm kHz? | + | <br>Wie groß sind die Gewichte der Spektrallinien bei f = 97 \ \rm kHz? |
|type="{}"} | |type="{}"} | ||
S_+(f = 97 \ \rm kHz)\ = \ { -0.453--0.427 } \ \rm V | S_+(f = 97 \ \rm kHz)\ = \ { -0.453--0.427 } \ \rm V | ||
Line 55: | Line 58: | ||
− | {Wie groß ist die erforderliche Kanalbandbreite B_{\rm K} für η = 1, wenn man (betragsmäßige) Impulsgewichte kleiner als 0.01 vernachlässigt? | + | {Wie groß ist die erforderliche Kanalbandbreite B_{\rm K} für η = 1, wenn man (betragsmäßige) Impulsgewichte kleiner als 0.01 vernachlässigt? |
|type="{}"} | |type="{}"} | ||
η = 1\text{:} \ \ \ B_{\rm K}\ = \ { 18 3% } \ \rm kHz | η = 1\text{:} \ \ \ B_{\rm K}\ = \ { 18 3% } \ \rm kHz | ||
− | {Welche Kanalbandbreiten würden sich für η = 2 und η = 3 ergeben? | + | {Welche Kanalbandbreiten würden sich für η = 2 und η = 3 ergeben? |
|type="{}"} | |type="{}"} | ||
η = 2\text{:} \ \ \ B_{\rm K}\ = \ { 24 3% } \ \rm kHz | η = 2\text{:} \ \ \ B_{\rm K}\ = \ { 24 3% } \ \rm kHz |
Revision as of 17:57, 18 December 2018
Es wird hier von folgenden Gleichungen ausgegangen:
- Quellensignal:
- q(t) = 2\,{\rm V} \cdot \sin(2 \pi \cdot 3\,{\rm kHz} \cdot t)\hspace{0.05cm},
- Sendesignal:
- s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + K_{\rm M} \cdot q(t)\big ]\hspace{0.05cm},
- Empfangssignal (idealer Kanal:
- r(t) = s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + \phi(t)\big ]\hspace{0.05cm},
- idealer Demodulator:
- v(t) = \frac{1}{ K_{\rm M}} \cdot \phi(t)\hspace{0.05cm}.
Die Grafik zeigt die Besselfunktionen erster Art und n-ter Ordnung in tabellarischer Form.
Hinweise:
- Die Aufgabe gehört zum Kapitel Phasenmodulation.
- Bezug genommen wird insbesondere auf die Seiten Spektralfunktion eines phasenmodulierten Sinussignals sowie Interpretation des Besselspektrums.
Fragebogen
Musterlösung
(2) Eine Winkelmodulation (PM, FM) führt bei bandbegrenztem Kanal stets zu nichtlinearen Verzerrungen. Bei Zweiseitenband-Amplitudenmodulation (ZSB-AM) ist hier dagegen bereits mit B_{\rm K} = 6 \ \rm kHz eine verzerrungsfreie Übertragung möglich ⇒ Antwort 1.
(3) Der Modulationsindex (oder Phasenhub) ist bei Phasenmodulation gleich η = K_{\rm M} · A_{\rm N}. Somit ist die Modulatorkonstante K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}} zu wählen, damit sich η = 1 ergibt.
(4) Es liegt ein sogenanntes Besselspektrum vor:
- S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.
Dieses ist ein diskretes Spektrum mit Anteilen bei f = n · f_{\rm N}, wobei n ganzzahlig ist. Die Gewichte der Diracfunktionen sind durch die Besselfunktionen gegeben. Mit A_{\rm T} = 1\ \rm V erhält man:
- S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},
- S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},
- S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.
Aufgrund der Symmetrie {\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta) erhält man für die Spektrallinie bei f = -3 \ \rm kHz:
- S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.
Anmerkung: Eigentlich müsste man für den Spektralwert bei f = 0 schreiben:
- S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.
Dieser ist somit aufgrund der Diracfunktion unendlich groß, lediglich das Gewicht der Diracfunktion ist endlich. Gleiches gilt für alle diskreten Spektrallinien.
(5) S_+(f) ergibt sich aus S_{\rm TP}(f) durch Verschiebung um f_{\rm T} nach rechts. Deshalb ist
- S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.
Das tatsächliche Spektrum unterscheidet sich von S_+(f) bei positiven Frequenzen um den Faktor 1/2:
- S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.
Allgemein kann geschrieben werden:
- S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.
(6) Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien {\rm J}_{|n|>3} außer Acht gelassen werden. Damit erhält man B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}.
(7) Die Zahlenwerte in der Tabelle auf der Angabenseite zeigen, dass nun folgende Kanalbandbreiten erforderlich wären:
- für η = 2: B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz},
- für η = 3: B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}