Difference between revisions of "Aufgaben:Exercise 3.2Z: Bessel Spectrum"
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Line 8: | Line 8: | ||
Beispielsweise kann man das äquivalente Tiefpass–Signal am Ausgang eines Winkelmodulators (PM, FM) in dieser Form darstellen, wenn man geeignete Normierungen vornimmt. | Beispielsweise kann man das äquivalente Tiefpass–Signal am Ausgang eines Winkelmodulators (PM, FM) in dieser Form darstellen, wenn man geeignete Normierungen vornimmt. | ||
− | Die Fourierreihendarstellung lautet mit T_0 = 2π/ω_0: | + | *Die Fourierreihendarstellung lautet mit T_0 = 2π/ω_0: |
:x(t) = \sum_{n = - \infty}^{+\infty}D_n \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t }\hspace{0.05cm}, | :x(t) = \sum_{n = - \infty}^{+\infty}D_n \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t }\hspace{0.05cm}, | ||
: D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}x(t) \cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}. | : D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}x(t) \cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}. | ||
− | + | *Die komplexen Fourierkoeffizienten kann man mit den Besselfunktionen erster Art und n–ter Ordnung ausdrücken: | |
:{\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}. | :{\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}. | ||
− | Diese sind in der Grafik im Bereich 0 ≤ η ≤ 5 dargestellt. Für negative Werte von n erhält man: | + | *Diese sind in der Grafik im Bereich 0 ≤ η ≤ 5 dargestellt. Für negative Werte von n erhält man: |
:{\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)\hspace{0.05cm}. | :{\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)\hspace{0.05cm}. | ||
− | Die Reihendarstellung der Besselfunktionen lautet: | + | *Die Reihendarstellung der Besselfunktionen lautet: |
:{\rm J}_n (\eta) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}. | :{\rm J}_n (\eta) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}. | ||
− | Sind die Funktionswerte für n = 0 und n = 1 bekannt, so können daraus die Besselfunktionen für n ≥ 2 iterativ ermittelt werden: | + | *Sind die Funktionswerte für n = 0 und n = 1 bekannt, so können daraus die Besselfunktionen für n ≥ 2 iterativ ermittelt werden: |
:{\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}. | :{\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}. | ||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]]. | + | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]]. |
− | *Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Phasenmodulation_(PM)#.C3.84quivalentes_TP.E2.80.93Signal_bei_Phasenmodulation|Äquivalentes Tiefpass-Signal bei Phasenmodulation]]. | + | *Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Phasenmodulation_(PM)#.C3.84quivalentes_TP.E2.80.93Signal_bei_Phasenmodulation|Äquivalentes Tiefpass-Signal bei Phasenmodulation]]. |
*Die Werte der Besselfunktionen findet man in Formelsammlungen in tabellarischer Form. | *Die Werte der Besselfunktionen findet man in Formelsammlungen in tabellarischer Form. | ||
− | *Sie können zur Lösung dieser Aufgabe auch das | + | *Sie können zur Lösung dieser Aufgabe auch das interaktive Applet [[Applets:Besselfunktionen_erster_Art_(neues_Applet)| Besselfunktion erster Art]] benutzen. |
Revision as of 18:11, 18 December 2018
Wir betrachten das komplexe Signal
- x(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t) }\hspace{0.05cm}.
Beispielsweise kann man das äquivalente Tiefpass–Signal am Ausgang eines Winkelmodulators (PM, FM) in dieser Form darstellen, wenn man geeignete Normierungen vornimmt.
- Die Fourierreihendarstellung lautet mit T_0 = 2π/ω_0:
- x(t) = \sum_{n = - \infty}^{+\infty}D_n \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t }\hspace{0.05cm},
- D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}x(t) \cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.
- Die komplexen Fourierkoeffizienten kann man mit den Besselfunktionen erster Art und n–ter Ordnung ausdrücken:
- {\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.
- Diese sind in der Grafik im Bereich 0 ≤ η ≤ 5 dargestellt. Für negative Werte von n erhält man:
- {\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)\hspace{0.05cm}.
- Die Reihendarstellung der Besselfunktionen lautet:
- {\rm J}_n (\eta) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.
- Sind die Funktionswerte für n = 0 und n = 1 bekannt, so können daraus die Besselfunktionen für n ≥ 2 iterativ ermittelt werden:
- {\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.
Hinweise:
- Die Aufgabe gehört zum Kapitel Phasenmodulation.
- Bezug genommen wird insbesondere auf die Seite Äquivalentes Tiefpass-Signal bei Phasenmodulation.
- Die Werte der Besselfunktionen findet man in Formelsammlungen in tabellarischer Form.
- Sie können zur Lösung dieser Aufgabe auch das interaktive Applet Besselfunktion erster Art benutzen.
Fragebogen
Musterlösung
- x(t) ist ein komplexes Signal, das nur in Ausnahmefällen reell wird, zum Beispiel zur Zeit t = 0. Ein rein imaginärer Wert (zu gewissen Zeiten) kann sich nur dann ergeben, wenn η ≥ π/2 ist ⇒ Antwort 1 ist falsch.
- Mit T_0 = 2π/ω_0 gilt beispielsweise:
- x(t + k \cdot T_0) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} (t \hspace{0.05cm}+ \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm}T_0)) } = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} + \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi) } ={\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} ) } = x(t)\hspace{0.05cm}.
- Dieses Signal ist periodisch. Zur Berechnung der Spektralfunktion muss die Fourierreihe und nicht das Fourierintegral herangezogen werden.
(2) Die Fourierkoeffizienten lauten:
- D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t) }\cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.
Durch Zusammenfassen der beiden Terme und nach der Substitution α = ω_0 · t erhält man:
- D_n = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm} = {\rm J}_n (\eta) .
Richtig ist also der zweite Lösungsvorschlag.
(3) Mit dem Satz von Euler können die Fourierkoeffizienten wie folgt dargestellt werden:
- D_n = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha + \frac{\rm j}{2\pi}\cdot \int_{-\pi}^{+\pi} {\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.
Der Integrand des ersten Integrals ist eine gerade Funktion von α:
- I_1 (-\alpha) = {\cos( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\cos( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}= {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = I_1 (\alpha) \hspace{0.05cm}.
Dagegen ist der zweite Integrand eine ungerade Funktion:
- I_2 (-\alpha) = {\sin( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\sin( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}= -{\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = -I_2 (\alpha) \hspace{0.05cm}.
Somit verschwindet das zweite Integral und man erhält unter Berücksichtigung der Symmetrie:
- D_n = \frac{1}{\pi}\cdot \int_{0}^{\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.
Richtig ist somit der Lösungsvorschlag 1.
(4) Entsprechend der iterativen Berechnungsformel gilt für η = 2:
- D_2 = D_1 - D_0 = 0.577 - 0.224 \hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},
- D_3 = 2 \cdot D_2 - D_1 = 2 \cdot 0.353 - 0.577 \hspace{0.15cm}\underline {= 0.129} \hspace{0.05cm}.
(5) Aufgrund der angegebenen Symmetriebeziehung gilt weiter:
- D{–2} = D_2\hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},
- D{–3} = – D_3 \hspace{0.15cm}\underline {= -0.129} \hspace{0.05cm}.