Difference between revisions of "Aufgaben:Exercise 1.6Z: Two Optimal Systems"
From LNTwww
Line 65: | Line 65: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Beide Systeme arbeiten gemäß der Angabe mit gleicher Bitrate. Der NRZ–Sendegrundimpuls von System '''A''' hat die Symboldauer $T = 0.5\ \rm | + | '''(1)''' Beide Systeme arbeiten gemäß der Angabe mit gleicher Bitrate. |
+ | *Der NRZ–Sendegrundimpuls von System '''A''' hat die Symboldauer $T = 0.5\ \rm µ s$. | ||
+ | *Daraus ergibt sich für die Bitrate $R = 1/T$ $ \underline{= 2\ \rm Mbit/s}$. | ||
+ | |||
'''(2)''' Die Energie des NRZ–Sendegrundimpulses von System '''A''' ergibt sich zu | '''(2)''' Die Energie des NRZ–Sendegrundimpulses von System '''A''' ergibt sich zu | ||
Line 71: | Line 74: | ||
\int_{-\infty}^{+\infty}g_s^2 (t)\,{\rm d} t = | \int_{-\infty}^{+\infty}g_s^2 (t)\,{\rm d} t = | ||
s_0^2 \cdot T = {1\,{\rm V^2}}\cdot {0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline { = 0.5 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$ | s_0^2 \cdot T = {1\,{\rm V^2}}\cdot {0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline { = 0.5 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$ | ||
+ | |||
'''(3)''' Die <u>beiden ersten Aussagen treffen zu</u>: | '''(3)''' Die <u>beiden ersten Aussagen treffen zu</u>: | ||
*In beiden Fällen muss $h_{\rm E}(t)$ formgleich mit $g_{s}(t)$ und $H_{\rm E}(f)$ formgleich mit $G_{s}(f)$ sein. | *In beiden Fällen muss $h_{\rm E}(t)$ formgleich mit $g_{s}(t)$ und $H_{\rm E}(f)$ formgleich mit $G_{s}(f)$ sein. | ||
− | *Somit ergibt sich beim System '''A''' eine rechteckförmige Impulsantwort $h_{\rm E}(t)$ und damit ein si–förmiger Frquenzgang $H_{\rm E}(f)$. *Beim System '''B''' ist $H_{\rm E}(f)$ wie $G_{s}(f)$ rechteckförmig und damit die Impulsantwort $h_{\rm E}(t)$ eine si–Funktion. | + | *Somit ergibt sich beim System '''A''' eine rechteckförmige Impulsantwort $h_{\rm E}(t)$ und damit ein si–förmiger Frquenzgang $H_{\rm E}(f)$. |
− | * | + | *Beim System '''B''' ist $H_{\rm E}(f)$ wie $G_{s}(f)$ rechteckförmig und damit die Impulsantwort $h_{\rm E}(t)$ eine si–Funktion. |
+ | *Aussage 3 ist falsch: Ein Integrator besitzt eine rechteckige Impulsantwort und würde sich für die Realisierung von System '''A''' anbieten, nicht jedoch für System '''B'''. | ||
− | '''(4)''' Beim System '''B''' stimmt $G_{d}(f)$ mit $G_{s}(f)$ nahezu überein. Lediglich bei der Nyquistfrequenz gibt es einen Unterschied, der sich aber für die hier angestellten Betrachtungen nicht weiter auswirkt: Während $G_{s}(f_{\rm Nyq}) = 1/2$ gilt, ist $G_{d}(f_{\rm Nyq}) = 1/4$. | + | '''(4)''' Beim System '''B''' stimmt $G_{d}(f)$ mit $G_{s}(f)$ nahezu überein. |
+ | *Lediglich bei der Nyquistfrequenz gibt es einen Unterschied, der sich aber für die hier angestellten Betrachtungen nicht weiter auswirkt: | ||
+ | *Während $G_{s}(f_{\rm Nyq}) = 1/2$ gilt, ist $G_{d}(f_{\rm Nyq}) = 1/4$. | ||
− | Es ergibt sich also ein Nyquistsystem mit Rolloff–Faktor $r = 0$. Daraus folgt für die Nyquistfrequenz aus der Bedingung, dass die Symboldauer ebenfalls $T = 0.5\ \rm | + | *Es ergibt sich also ein Nyquistsystem mit Rolloff–Faktor $r = 0$. |
+ | *Daraus folgt für die Nyquistfrequenz aus der Bedingung, dass die Symboldauer ebenfalls $T = 0.5\ \rm µ s$ sein soll: | ||
:$$f_{\rm 0} = f_{\rm Nyq} = \frac{1 } {2 \cdot T} = \frac{1 } {2 \cdot 0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline {= 1\,{\rm MHz}}\hspace{0.05cm}.$$ | :$$f_{\rm 0} = f_{\rm Nyq} = \frac{1 } {2 \cdot T} = \frac{1 } {2 \cdot 0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline {= 1\,{\rm MHz}}\hspace{0.05cm}.$$ | ||
− | + | ||
+ | |||
'''(5)''' Für die Energie des Sendegrundimpulses kann auch geschrieben werden: | '''(5)''' Für die Energie des Sendegrundimpulses kann auch geschrieben werden: | ||
:$$E_{\rm B} = | :$$E_{\rm B} = | ||
\int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = G_0^2 | \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = G_0^2 | ||
\cdot 2 f_0\hspace{0.05cm}.$$ | \cdot 2 f_0\hspace{0.05cm}.$$ | ||
− | Mit den Ergebnissen aus (2) und (4) folgt daraus: | + | *Mit den Ergebnissen aus '''(2)''' und '''(4)''' folgt daraus: |
:$$G_0^2 = \frac{E_{\rm B}}{2 f_0} = \frac{5 \cdot 10^{-7}\,{\rm V^2/Hz}}{2 \cdot 10^{6}\,{\rm | :$$G_0^2 = \frac{E_{\rm B}}{2 f_0} = \frac{5 \cdot 10^{-7}\,{\rm V^2/Hz}}{2 \cdot 10^{6}\,{\rm | ||
Hz}}= 2.5 \cdot 10^{-13}\,{\rm V^2/Hz^2} | Hz}}= 2.5 \cdot 10^{-13}\,{\rm V^2/Hz^2} |
Revision as of 18:00, 4 February 2019
Betrachtet werden zwei binäre Übertragungssysteme $\rm A$ und $\rm B$ , die bei einem AWGN–Kanal mit Rauschleistungsdichte $N_{0}$ das gleiche Fehlerverhalten aufweisen. In beiden Fällen gilt für die Bitfehlerwahrscheinlichkeit:
- $$p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
- Das System $\rm A$ verwendet den NRZ–Sendegrundimpuls $g_{s}(t)$ gemäß der oberen Skizze mit der Amplitude $s_{0} = 1 \ \rm V$ und der Dauer $T = 0.5\ \rm µ s$.
- Dagegen besitzt das System $\rm B$ , das mit der gleichen Bitrate wie das System $\rm A$ arbeiten soll, ein rechteckförmiges Sendegrundimpulsspektrum:
- $$G_s(f) = \left\{ \begin{array}{c} G_0 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |f| < f_0 \hspace{0.05cm}, \\ |f| > f_0 \hspace{0.05cm}.\\ \end{array}$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Optimierung der Basisbandübertragungssysteme.
- Beachten Sie bitte, dass hier die Impulsamplitude in „Volt” angegeben ist, so dass die mittlere Energie pro Bit $(E_{\rm B})$ die Einheit $\rm V^{2}/Hz$ aufweist.
Fragebogen
Musterlösung
(1) Beide Systeme arbeiten gemäß der Angabe mit gleicher Bitrate.
- Der NRZ–Sendegrundimpuls von System A hat die Symboldauer $T = 0.5\ \rm µ s$.
- Daraus ergibt sich für die Bitrate $R = 1/T$ $ \underline{= 2\ \rm Mbit/s}$.
(2) Die Energie des NRZ–Sendegrundimpulses von System A ergibt sich zu
- $$E_{\rm B} = \int_{-\infty}^{+\infty}g_s^2 (t)\,{\rm d} t = s_0^2 \cdot T = {1\,{\rm V^2}}\cdot {0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline { = 0.5 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
(3) Die beiden ersten Aussagen treffen zu:
- In beiden Fällen muss $h_{\rm E}(t)$ formgleich mit $g_{s}(t)$ und $H_{\rm E}(f)$ formgleich mit $G_{s}(f)$ sein.
- Somit ergibt sich beim System A eine rechteckförmige Impulsantwort $h_{\rm E}(t)$ und damit ein si–förmiger Frquenzgang $H_{\rm E}(f)$.
- Beim System B ist $H_{\rm E}(f)$ wie $G_{s}(f)$ rechteckförmig und damit die Impulsantwort $h_{\rm E}(t)$ eine si–Funktion.
- Aussage 3 ist falsch: Ein Integrator besitzt eine rechteckige Impulsantwort und würde sich für die Realisierung von System A anbieten, nicht jedoch für System B.
(4) Beim System B stimmt $G_{d}(f)$ mit $G_{s}(f)$ nahezu überein.
- Lediglich bei der Nyquistfrequenz gibt es einen Unterschied, der sich aber für die hier angestellten Betrachtungen nicht weiter auswirkt:
- Während $G_{s}(f_{\rm Nyq}) = 1/2$ gilt, ist $G_{d}(f_{\rm Nyq}) = 1/4$.
- Es ergibt sich also ein Nyquistsystem mit Rolloff–Faktor $r = 0$.
- Daraus folgt für die Nyquistfrequenz aus der Bedingung, dass die Symboldauer ebenfalls $T = 0.5\ \rm µ s$ sein soll:
- $$f_{\rm 0} = f_{\rm Nyq} = \frac{1 } {2 \cdot T} = \frac{1 } {2 \cdot 0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline {= 1\,{\rm MHz}}\hspace{0.05cm}.$$
(5) Für die Energie des Sendegrundimpulses kann auch geschrieben werden:
- $$E_{\rm B} = \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = G_0^2 \cdot 2 f_0\hspace{0.05cm}.$$
- Mit den Ergebnissen aus (2) und (4) folgt daraus:
- $$G_0^2 = \frac{E_{\rm B}}{2 f_0} = \frac{5 \cdot 10^{-7}\,{\rm V^2/Hz}}{2 \cdot 10^{6}\,{\rm Hz}}= 2.5 \cdot 10^{-13}\,{\rm V^2/Hz^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_0 \hspace{0.1cm}\underline {= 0.5 \cdot 10^{-6}\,{\rm V/Hz}} \hspace{0.05cm}.$$
(6) Richtig ist der Lösungsvorschlag 1:
- Das System A stellt auch bei Spitzenwertbegrenzung das optimale System dar.
- Dagegen wäre das System B aufgrund des äußerst ungünstigen Crestfaktors hierfür denkbar ungeeignet.