Difference between revisions of "Aufgaben:Exercise 1.08: Comparison of ASK and BPSK"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1680__Dig_A_4_1.png|right|frame|Fehlerwahrscheinlichkeiten von <br>ASK und BPSK]]
+
[[File:P_ID1680__Dig_A_4_1.png|right|frame|Bitfehlerwahrscheinlichkeiten <br>von ASK und BPSK]]
Die Bitfehlerwahrscheinlichkeiten der Modulationsarten ''Amplitude Shift Keying'' (ASK) und ''Binary Shift Keying'' (BPSK) werden oft durch die beiden folgenden Gleichungen angegeben:
+
Die Bitfehlerwahrscheinlichkeiten der Modulationsarten &nbsp;''Amplitude Shift Keying''&nbsp; (ASK) und &nbsp;''Binary Shift Keying''&nbsp; (BPSK) werden oft durch die beiden folgenden Gleichungen angegeben:
 
:$$p_{\rm ASK}  = \ {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \right ),$$
 
:$$p_{\rm ASK}  = \ {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \right ),$$
 
:$$ p_{\rm BPSK} = \ {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{ N_0 }} \right ).$$
 
:$$ p_{\rm BPSK} = \ {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{ N_0 }} \right ).$$
  
 
Diese beiden Gleichungen sind in der beigefügten Tabelle ausgewertet. Dabei gilt:
 
Diese beiden Gleichungen sind in der beigefügten Tabelle ausgewertet. Dabei gilt:
*$E_{\rm B}$ gibt die mittlere Energie pro Bit an.
+
*$E_{\rm B}$&nbsp; gibt die mittlere Energie pro Bit an.
*$N_{0}$ ist die Rauschleistungsdichte.
+
*$N_{0}$&nbsp; ist die Rauschleistungsdichte.
*Zwischen den Fehlerfunktionen ${\rm Q}(x)$ und ${\rm erfc}(x)$ besteht ein fester Zusammenhang.
+
*Zwischen den Fehlerfunktionen &nbsp;${\rm Q}(x)$&nbsp; und &nbsp;${\rm erfc}(x)$&nbsp; besteht ein fester Zusammenhang.
 +
 
  
 
Anzumerken ist, dass diese Gleichungen nicht allgemein gelten, sondern nur unter gewissen idealisierten Bedingungen. Diese Voraussetzungen sollen in dieser Aufgabe herausgearbeitet werden.
 
Anzumerken ist, dass diese Gleichungen nicht allgemein gelten, sondern nur unter gewissen idealisierten Bedingungen. Diese Voraussetzungen sollen in dieser Aufgabe herausgearbeitet werden.
 +
 +
 +
 +
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
 
   
 
   
*Sie können die Ergebnisse mit dem Applet [[Komplementäre Gaußsche Fehlerfunktionen]] überprüfen.
+
*Sie können die Ergebnisse mit dem Applet [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen_(neues_Applet)|Komplementäre Gaußsche Fehlerfunktionen]] überprüfen.
  
  
Line 26: Line 31:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Zusammenhang besteht zwischen ${\rm Q}(x)$ und ${\rm erfc}(x)$?
+
{Welcher Zusammenhang besteht zwischen &nbsp;${\rm Q}(x)$&nbsp; und &nbsp;${\rm erfc}(x)$?
 
|type="[]"}
 
|type="[]"}
- Es gilt ${\rm Q}(x)= 2 \cdot{\rm erfc}(x)$,
+
- Es gilt &nbsp;${\rm Q}(x)= 2 \cdot{\rm erfc}(x)$,
+ Es gilt ${\rm Q}(x)= 0.5 \cdot{\rm erfc}(x)/\sqrt{2})$,
+
+ Es gilt &nbsp;${\rm Q}(x)= 0.5 \cdot{\rm erfc}(x)/\sqrt{2})$,
-  Es gilt ${\rm erfc}(x)= 0.5 \cdot{\rm Q}(x)/\sqrt{2})$.
+
-  Es gilt &nbsp;${\rm erfc}(x)= 0.5 \cdot{\rm Q}(x)/\sqrt{2})$.
  
{Wann gelten die angegebenen Fehlerwahrscheinlichkeits–Gleichungen?
+
{Wann gelten die angegebenen Gleichungen für die Fehlerwahrscheinlichkeits?
 
|type="[]"}
 
|type="[]"}
 
+  Sie gelten nur für den AWGN–Kanal.
 
+  Sie gelten nur für den AWGN–Kanal.
+ Sie gelten nur für Matched–Filter–Empfänger (oder Varianten).
+
+ Sie gelten nur für den Matched–Filter–Empfänger (oder Varianten).
 
-  Die Gleichungen berücksichtigen Impulsinterferenzen.
 
-  Die Gleichungen berücksichtigen Impulsinterferenzen.
 
-  Die Gleichungen gelten nur bei rechteckförmigen Signalen.
 
-  Die Gleichungen gelten nur bei rechteckförmigen Signalen.
  
  
{Wie lauten die Fehlerwahrscheinlichkeiten für $10 \cdot  \lg \ E_{\rm B}/N_{0} = 12\, \rm dB$?
+
{Wie lauten die Fehlerwahrscheinlichkeiten für &nbsp;$10 \cdot  \lg \ E_{\rm B}/N_{0} = 12\, \rm dB$?
 
|type="{}"}
 
|type="{}"}
 
$ p_{\rm ASK} \ = \ $ { 0.343 3% } $\ \cdot 10^{-4}$
 
$ p_{\rm ASK} \ = \ $ { 0.343 3% } $\ \cdot 10^{-4}$
 
$ p_{\rm BPSK} \ = \ $ { 0.901 3% } $\ \cdot 10^{-8}$
 
$ p_{\rm BPSK} \ = \ $ { 0.901 3% } $\ \cdot 10^{-8}$
  
{Welche Fehlerwahrscheinlichkeiten ergeben sich für $E_{\rm B}/N_{0} = 8$?
+
{Welche Fehlerwahrscheinlichkeiten ergeben sich für &nbsp;$E_{\rm B}/N_{0} = 8$?
 
|type="{}"}
 
|type="{}"}
 
$ p_{\rm ASK} \ = \ $ { 0.241 3% } $\ \cdot 10^{-2}$
 
$ p_{\rm ASK} \ = \ $ { 0.241 3% } $\ \cdot 10^{-2}$
 
$ p_{\rm BPSK} \ = \ $ { 0.336 3% } $\ \cdot 10^{-4}$
 
$ p_{\rm BPSK} \ = \ $ { 0.336 3% } $\ \cdot 10^{-4}$
  
{Die Fehlerwahrscheinlichkeit soll nicht größer werden als $10^{-8}$. Wie groß ist das erforderliche $10 \cdot \lg \ E_{\rm B}/N_{0}$ bei ASK?
+
{Die Fehlerwahrscheinlichkeit soll nicht größer werden als &nbsp;$10^{-8}$. Wie groß ist das erforderliche &nbsp;$10 \cdot \lg \ E_{\rm B}/N_{0}$&nbsp; bei ASK?
 
|type="{}"}
 
|type="{}"}
 
$(E_{\rm B}/N_{0})_{\rm min} \ = \ $ { 15 3% } $\ \rm dB $
 
$(E_{\rm B}/N_{0})_{\rm min} \ = \ $ { 15 3% } $\ \rm dB $

Revision as of 11:16, 6 February 2019

Bitfehlerwahrscheinlichkeiten
von ASK und BPSK

Die Bitfehlerwahrscheinlichkeiten der Modulationsarten  Amplitude Shift Keying  (ASK) und  Binary Shift Keying  (BPSK) werden oft durch die beiden folgenden Gleichungen angegeben:

$$p_{\rm ASK} = \ {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \right ),$$
$$ p_{\rm BPSK} = \ {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{ N_0 }} \right ).$$

Diese beiden Gleichungen sind in der beigefügten Tabelle ausgewertet. Dabei gilt:

  • $E_{\rm B}$  gibt die mittlere Energie pro Bit an.
  • $N_{0}$  ist die Rauschleistungsdichte.
  • Zwischen den Fehlerfunktionen  ${\rm Q}(x)$  und  ${\rm erfc}(x)$  besteht ein fester Zusammenhang.


Anzumerken ist, dass diese Gleichungen nicht allgemein gelten, sondern nur unter gewissen idealisierten Bedingungen. Diese Voraussetzungen sollen in dieser Aufgabe herausgearbeitet werden.




Hinweise:


Fragebogen

1

Welcher Zusammenhang besteht zwischen  ${\rm Q}(x)$  und  ${\rm erfc}(x)$?

Es gilt  ${\rm Q}(x)= 2 \cdot{\rm erfc}(x)$,
Es gilt  ${\rm Q}(x)= 0.5 \cdot{\rm erfc}(x)/\sqrt{2})$,
Es gilt  ${\rm erfc}(x)= 0.5 \cdot{\rm Q}(x)/\sqrt{2})$.

2

Wann gelten die angegebenen Gleichungen für die Fehlerwahrscheinlichkeits?

Sie gelten nur für den AWGN–Kanal.
Sie gelten nur für den Matched–Filter–Empfänger (oder Varianten).
Die Gleichungen berücksichtigen Impulsinterferenzen.
Die Gleichungen gelten nur bei rechteckförmigen Signalen.

3

Wie lauten die Fehlerwahrscheinlichkeiten für  $10 \cdot \lg \ E_{\rm B}/N_{0} = 12\, \rm dB$?

$ p_{\rm ASK} \ = \ $

$\ \cdot 10^{-4}$
$ p_{\rm BPSK} \ = \ $

$\ \cdot 10^{-8}$

4

Welche Fehlerwahrscheinlichkeiten ergeben sich für  $E_{\rm B}/N_{0} = 8$?

$ p_{\rm ASK} \ = \ $

$\ \cdot 10^{-2}$
$ p_{\rm BPSK} \ = \ $

$\ \cdot 10^{-4}$

5

Die Fehlerwahrscheinlichkeit soll nicht größer werden als  $10^{-8}$. Wie groß ist das erforderliche  $10 \cdot \lg \ E_{\rm B}/N_{0}$  bei ASK?

$(E_{\rm B}/N_{0})_{\rm min} \ = \ $

$\ \rm dB $


Musterlösung

(1)  Bereits aus den Gleichungen auf der Angabenseite ist ersichtlich, dass der Lösungsvorschlag 2 richtig ist. Die Definitionsgleichungen lauten:

$$\rm Q (\it x) = \ \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm},$$
$$\rm erfc (\it x) = \ \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$

Durch einfache Substitutionen kann der oben genannte Zusammenhang einfach nachgewiesen werden:

$$\rm Q ( x) = 1/2 \cdot \rm erfc (x/\sqrt{2}) \hspace{0.05cm}.$$

(2)  Richtig sind die beiden ersten Lösungsvorschläge:

  • Die Gleichungen gelten nur für den AWGN–Kanal und für einen optimalen Binärempfänger, zum Beispiel entsprechend des Matched–Filter–Ansatzes.
  • Impulsinterferenzen – verursacht durch den Kanal oder das Empfangsfilter – werden damit nicht erfasst.
  • Die genaue Sendeimpulsformung spielt dagegen keine Rolle, solange das Empfangsfilter $H_{\rm E}(f)$ an das Sendespektrum angepasst ist. Vielmehr gilt:
  • Zwei unterschiedliche Sendeimpulsformer $H_{\rm S}(f)$ führen zur genau gleichen Fehlerwahrscheinlichkeit, wenn sie die gleiche Energie pro Bit aufweisen.


(3)  Diese Ergebnisse können direkt aus der Tabelle abgelesen werden:

$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.343 \cdot 10^{-4}},\hspace{0.3cm}p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.901 \cdot 10^{-8}}.$$


(4)  Mit $E_{\rm B}/N_{0} = 8\ \Rightarrow \ 10 \cdot \lg \ E_{\rm B}/N_{0} \approx 9 \ \rm dB$ erhält man folgende Fehlerwahrscheinlichkeiten:

$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.241 \cdot 10^{-2}},\hspace{0.3cm}p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.336 \cdot 10^{-4}}.$$

(5)  Aus der Teilaufgabe (3) folgt, dass bei der binären Phasenmodulation $10 \cdot \lg \ E_{\rm B}/N_{0} \approx 12 \ \rm dB$ erfüllt sein muss, damit $p_{\rm BPSK} \approx 10^{-8}$ möglich ist. Die angegebenen Gleichungen zeigen aber auch, dass die ASK–Kurve um $3 \ \rm dB$ (exakt $3.01 \ \rm dB$) rechts von der BPSK–Kurve liegt. Daraus folgt:

$$10 \cdot {\rm lg}\hspace{0.1cm}(E_{\rm B}/N_{\rm 0})_{\rm min}\hspace{0.1cm}\underline {\approx 15\,\,{\rm dB}} \hspace{0.05cm}.$$