Difference between revisions of "Aufgaben:Exercise 1.09: BPSK and 4-QAM"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 4: Line 4:
  
 
[[File:P_ID1682__Dig_A_4_2.png|right|frame|Phasendiagramme von BPSK und 4–QAM]]
 
[[File:P_ID1682__Dig_A_4_2.png|right|frame|Phasendiagramme von BPSK und 4–QAM]]
Die Grafik zeigt schematisch die Phasendiagramme der ''binären Phasenmodulation'' (abgekürzt '''BPSK''') und der ''Quadraturamplitudenmodulation'' ('''4–QAM''' genannt).  
+
Die Grafik zeigt schematisch die Phasendiagramme der ''binären Phasenmodulation''  (abgekürzt '''BPSK''') und der ''Quadraturamplitudenmodulation''  ('''4–QAM''' genannt).  
*Letztere lässt sich durch zwei BPSK–Systeme mit Cosinus– und Minus–Sinus–Träger beschreiben, wobei bei jedem der Teilkomponenten die Sendeamplitude gegenüber der BPSK um den Faktor $\sqrt{2}$ reduziert ist.  
+
*Letztere lässt sich durch zwei BPSK–Systeme mit Cosinus– und Minus–Sinus–Träger beschreiben, wobei bei jedem der Teilkomponenten die Sendeamplitude gegenüber der BPSK um den Faktor  $\sqrt{2}$  reduziert ist.  
*Die Hüllkurve des Gesamtsignals $s(t)$ ist somit ebenfalls konstant gleich $s_{0}$.
+
*Die Hüllkurve des Gesamtsignals  $s(t)$  ist somit ebenfalls konstant gleich  $s_{0}$.
*Die Fehlerwahrscheinlichkeit abhängig vom Quotienten $E_{\rm B}/N_{0}$ lautet bei BPSK und 4–QAM gleichermaßen:
+
*Die Fehlerwahrscheinlichkeit abhängig vom Quotienten  $E_{\rm B}/N_{0}$  lautet bei BPSK und 4–QAM gleichermaßen:
 
:$$p_{\rm B}  = \ {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right
 
:$$p_{\rm B}  = \ {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right
 
  )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{E_{\rm B}/{ N_0 }} \right ).$$
 
  )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{E_{\rm B}/{ N_0 }} \right ).$$
Line 19: Line 19:
  
 
Die Gleichungen gelten nur unter der Voraussetzung einer exakten Phasensynchronisation:  
 
Die Gleichungen gelten nur unter der Voraussetzung einer exakten Phasensynchronisation:  
*Bei einem Phasenversatz $\Delta\phi_{\rm T}$ zwischen sender– und empfangsseitigem Trägersignal erhöht sich die Fehlerwahrscheinlichkeit signifikant, wobei BPSK– und QAM–System unterschiedlich degradiert werden.  
+
*Bei einem Phasenversatz  $\Delta\phi_{\rm T}$  zwischen sender– und empfangsseitigem Trägersignal erhöht sich die Fehlerwahrscheinlichkeit signifikant, wobei BPSK– und QAM–System unterschiedlich degradiert werden.  
*Im Phasendiagramm macht sich der Phasenversatz durch eine Rotation der Punktwolken bemerkbar. In der Grafik sind die Mittelpunkte der Punktwolken für $\Delta\phi_{\rm T} = 15^\circ$ durch gelbe Kreuze markiert, während die roten Kreise die Mittelpunkte für $\Delta\phi_{\rm T} = 0$ angeben.
+
*Im Phasendiagramm macht sich der Phasenversatz durch eine Rotation der Punktwolken bemerkbar. In der Grafik sind die Mittelpunkte der Punktwolken für  $\Delta\phi_{\rm T} = 15^\circ$  durch gelbe Kreuze markiert, während die roten Kreise die Mittelpunkte für  $\Delta\phi_{\rm T} = 0$  angeben.
  
  
Es gilt stets $E_{\rm B}/N_{0} = 8$, so dass sich die Fehlerwahrscheinlichkeiten von BPSK und QAM im günstigsten Fall (ohne Phasenversatz) jeweils wie folgt ergeben    ⇒    [[Aufgaben:1.08Z_BPSK-Fehlerwahrscheinlichkeit|Aufgabe 1.8Z]]:
+
Es gilt stets  $E_{\rm B}/N_{0} = 8$, so dass sich die Fehlerwahrscheinlichkeiten von BPSK und QAM im günstigsten Fall (ohne Phasenversatz) jeweils wie folgt ergeben    ⇒    [[Aufgaben:1.08Z_BPSK-Fehlerwahrscheinlichkeit|Aufgabe 1.8Z]]:
 
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
 
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
  
Bezeichnet man den Abstand der BPSK–Nutzabtastwerte von der (vertikalen) Entscheiderschwelle mit $s_{0}$, so ergibt sich für den Rauscheffektivwert $\sigma_{d} = s_{0}/4$. Die helleren Kreise in der Grafik markieren die Höhenlinien mit dem Radius $2\sigma_{d}$ bzw. $3\sigma_{d}$ der Gaußschen 2D–WDF.
+
''Weitere Bemerkungen:''
 +
*Bezeichnet man den Abstand der BPSK–Nutzabtastwerte von der (vertikalen) Entscheiderschwelle mit  $s_{0}$, so ergibt sich für den Rauscheffektivwert  $\sigma_{d} = s_{0}/4$. Die helleren Kreise in der Grafik markieren die Höhenlinien mit dem Radius  $2\cdot \sigma_{d}$  bzw.  $3\cdot \sigma_{d}$  der Gaußschen 2D–WDF.
 +
 
 +
*Bei der 4–QAM sind gegenüber der BPSK die Abstände der rot eingezeichneten Nutzabtastwerte von den nun zwei Entscheiderschwellen jeweils um den Faktor  $\sqrt{2}$  geringer, aber es ergibt sich auch ein um den gleichen Faktor kleinerer Rauscheffektivwert  $\sigma_{d}$.
 +
 
 +
 
  
Bei der 4–QAM sind gegenüber der BPSK die Abstände der rot eingezeichneten Nutzabtastwerte von den nun zwei Entscheiderschwellen jeweils um den Faktor $\sqrt{2}$ geringer, aber es ergibt sich auch ein um den gleichen Faktor kleinerer Rauscheffektivwert $\sigma_{d}$.
 
  
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
+
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
*Bezug genommen wird insbesondere auf die Seite [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Phasenversatz_zwischen_Sender_und_Empf.C3.A4nger|Phasenversatz zwischen Sender und Empfänger]].  
+
*Bezug genommen wird insbesondere auf die Seite  [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Phasenversatz_zwischen_Sender_und_Empf.C3.A4nger|Phasenversatz zwischen Sender und Empfänger]].  
 
   
 
   
*Die Werte der Q–Funktion können Sie  mit dem Applet [[Komplementäre Gaußsche Fehlerfunktionen]] ermitteln.
+
*Die Werte der Q–Funktion können Sie  mit dem Applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen_(neues_Applet)|Komplementäre Gaußsche Fehlerfunktionen]]  ermitteln.
  
  
Line 44: Line 48:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß ist die Bitfehlerwahrscheinlichkeit bei BPSK mit $\Delta\phi_{\rm T} = 15^\circ$?
+
{Wie groß ist die Bitfehlerwahrscheinlichkeit bei BPSK mit &nbsp;$\Delta\phi_{\rm T} = 15^\circ$?
 
|type="{}"}
 
|type="{}"}
$p_{\rm B} \ = \ $ { 0.0057 3% } $\ \% $
+
$p_\text{B, BPSK} \ = \ $ { 0.0057 3% } $\ \% $
  
{Welche Bitfehlerwahrscheinlichkeit ergibt sich bei BPSK mit $\Delta\phi_{\rm T} = 45^\circ$?
+
{Welche Bitfehlerwahrscheinlichkeit ergibt sich bei BPSK mit &nbsp;$\Delta\phi_{\rm T} = 45^\circ$?
 
|type="{}"}
 
|type="{}"}
$p_{\rm B} \ = \ $ { 0.233 3% } $\ \%$
+
$p_\text{B, BPSK} \ = \ $ { 0.233 3% } $\ \%$
  
{Wie groß ist die Bitfehlerwahrscheinlichkeit bei 4–QAM mit $\Delta\phi_{\rm T} = 15^\circ$?
+
{Wie groß ist die Bitfehlerwahrscheinlichkeit bei 4–QAM mit &nbsp;$\Delta\phi_{\rm T} = 15^\circ$?
 
|type="{}"}
 
|type="{}"}
$p_{\rm B} \ = \ $ { 0.117 3% } $\ \%$
+
$p_\text{B, 4-QAM} \ = \ $ { 0.117 3% } $\ \%$
  
{Welche Fehlerwahrscheinlichkeit ergibt sich bei 4–QAM mit $\Delta\phi_{\rm T} = 45^\circ$?
+
{Welche Fehlerwahrscheinlichkeit ergibt sich bei 4–QAM mit &nbsp;$\Delta\phi_{\rm T} = 45^\circ$?
 
|type="{}"}
 
|type="{}"}
$p_{\rm B} \ = \ $ { 25 3% } $\ \%$
+
$p_\text{B, 4-QAM} \ = \ $ { 25 3% } $\ \%$
  
  

Revision as of 15:23, 7 February 2019

Phasendiagramme von BPSK und 4–QAM

Die Grafik zeigt schematisch die Phasendiagramme der binären Phasenmodulation  (abgekürzt BPSK) und der Quadraturamplitudenmodulation  (4–QAM genannt).

  • Letztere lässt sich durch zwei BPSK–Systeme mit Cosinus– und Minus–Sinus–Träger beschreiben, wobei bei jedem der Teilkomponenten die Sendeamplitude gegenüber der BPSK um den Faktor  $\sqrt{2}$  reduziert ist.
  • Die Hüllkurve des Gesamtsignals  $s(t)$  ist somit ebenfalls konstant gleich  $s_{0}$.
  • Die Fehlerwahrscheinlichkeit abhängig vom Quotienten  $E_{\rm B}/N_{0}$  lautet bei BPSK und 4–QAM gleichermaßen:
$$p_{\rm B} = \ {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{E_{\rm B}/{ N_0 }} \right ).$$

Die Fehlerwahrscheinlichkeit des BPSK–Systems kann aber auch in der Form

$$p_{\rm B,\hspace{0.04cm}BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{T_{\rm B}}}$$

dargestellt werden. Entsprechend gilt für das 4–QAM–System:

$$p_{\rm B,\hspace{0.04cm}QAM} = {\rm Q}\left ( \frac{s_0/\sqrt{2}}{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$

Die Gleichungen gelten nur unter der Voraussetzung einer exakten Phasensynchronisation:

  • Bei einem Phasenversatz  $\Delta\phi_{\rm T}$  zwischen sender– und empfangsseitigem Trägersignal erhöht sich die Fehlerwahrscheinlichkeit signifikant, wobei BPSK– und QAM–System unterschiedlich degradiert werden.
  • Im Phasendiagramm macht sich der Phasenversatz durch eine Rotation der Punktwolken bemerkbar. In der Grafik sind die Mittelpunkte der Punktwolken für  $\Delta\phi_{\rm T} = 15^\circ$  durch gelbe Kreuze markiert, während die roten Kreise die Mittelpunkte für  $\Delta\phi_{\rm T} = 0$  angeben.


Es gilt stets  $E_{\rm B}/N_{0} = 8$, so dass sich die Fehlerwahrscheinlichkeiten von BPSK und QAM im günstigsten Fall (ohne Phasenversatz) jeweils wie folgt ergeben   ⇒   Aufgabe 1.8Z:

$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$

Weitere Bemerkungen:

  • Bezeichnet man den Abstand der BPSK–Nutzabtastwerte von der (vertikalen) Entscheiderschwelle mit  $s_{0}$, so ergibt sich für den Rauscheffektivwert  $\sigma_{d} = s_{0}/4$. Die helleren Kreise in der Grafik markieren die Höhenlinien mit dem Radius  $2\cdot \sigma_{d}$  bzw.  $3\cdot \sigma_{d}$  der Gaußschen 2D–WDF.
  • Bei der 4–QAM sind gegenüber der BPSK die Abstände der rot eingezeichneten Nutzabtastwerte von den nun zwei Entscheiderschwellen jeweils um den Faktor  $\sqrt{2}$  geringer, aber es ergibt sich auch ein um den gleichen Faktor kleinerer Rauscheffektivwert  $\sigma_{d}$.




Hinweise:


Fragebogen

1

Wie groß ist die Bitfehlerwahrscheinlichkeit bei BPSK mit  $\Delta\phi_{\rm T} = 15^\circ$?

$p_\text{B, BPSK} \ = \ $

$\ \% $

2

Welche Bitfehlerwahrscheinlichkeit ergibt sich bei BPSK mit  $\Delta\phi_{\rm T} = 45^\circ$?

$p_\text{B, BPSK} \ = \ $

$\ \%$

3

Wie groß ist die Bitfehlerwahrscheinlichkeit bei 4–QAM mit  $\Delta\phi_{\rm T} = 15^\circ$?

$p_\text{B, 4-QAM} \ = \ $

$\ \%$

4

Welche Fehlerwahrscheinlichkeit ergibt sich bei 4–QAM mit  $\Delta\phi_{\rm T} = 45^\circ$?

$p_\text{B, 4-QAM} \ = \ $

$\ \%$


Musterlösung

(1)  Durch die Rotation des Phasendiagramms um $\Delta\phi_{\rm T} = 15^\circ$ wird der Abstand der Nutzabtastwerte von der Schwelle um $\cos(15^\circ) \approx 0.966$ geringer. Daraus folgt:

$$p_{\rm B} = {\rm Q}(0.966 \cdot 4) \approx {\rm Q}(3.86)= 0.57 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.0057\, \%}.$$


(2)  Analog zu Teilaufgabe (1) erhält man mit $cos(45^\circ) \approx 0.707$:

$$p_{\rm B} = {\rm Q}(0.707 \cdot 4) \approx {\rm Q}(2.83)\hspace{0.1cm}\underline {= 0.233 \, \%}.$$


(3)  Bei 4–QAM wird durch die Rotation um $\Delta\phi_{\rm T}$ im Uhrzeigersinn der Abstand

  • von der horizontalen Schwelle (Entscheidung des ersten Bits) gleich $s_{0} \cdot \cos(45^\circ + \Delta\phi_{\rm T})$, also kleiner als ohne Phasenversatz,
  • von der vertikalen Schwelle (Entscheidung des zweiten Bits) gleich $s_{0} \cdot \cos(45^\circ - \Delta\phi_{\rm T})$, also größer als ohne Phasenversatz.

Damit erhält man für die mittlere Fehlerwahrscheinlichkeit:

$$p_{\rm B} = {1}/{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ+{\rm \Delta} \phi_{\rm T}) \cdot s_0}{0.25 \cdot s_0 / \sqrt{2}} \right ) + {1}/{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ-{\rm \Delta} \phi_{\rm T}) \cdot s_0}{0.25 \cdot s_0 / \sqrt{2}}\right ).$$

Hierbei ist der kleinere Rauscheffektivwert der 4–QAM bereits berücksichtigt. Zur Kontrolle berechnen wir die Fehlerwahrscheinlichkeit für $\Delta\phi_{\rm T} = 0$:

$$p_{\rm B} = {1}/{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ) \cdot 4}{1 / \sqrt{2}} \right ) +{1}/{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ) \cdot 4}{1 / \sqrt{2}} \right )= {\rm Q}(4) = 0.317 \cdot 10^{-4}.$$

Dagegen erhält man mit $\Delta\phi_{\rm T} = 15^\circ$:

$$p_{\rm B} = {1}/{2} \cdot {\rm Q}\left ( \frac{\cos(60^\circ) \cdot 4}{1 / \sqrt{2}} \right ) +{1}/{2} \cdot {\rm Q}\left ( \frac{\cos(30^\circ) \cdot 4}{1 / \sqrt{2}} \right )= {1}/{2} \cdot \left [{\rm Q}(2.83)+ {\rm Q}(4.90)\right]$$
$$\Rightarrow \hspace{0.3cm} p_{\rm B} \approx \frac{1}{2} \cdot \left [0.233 \cdot 10^{-2}+ 0.479 \cdot 10^{-6}\right] \hspace{0.1cm}\underline {= 0.117 \, \%}.$$


(4)  Bei einem Phasenversatz von $45^\circ$ erhält man aus der oben allgemein hergeleiteten Gleichung:

$$p_{\rm B} ={1}/{2} \cdot {\rm Q}\left ( \frac{\cos(90^\circ) \cdot 4}{1 / \sqrt{2}} \right ) +{1}/{2} \cdot {\rm Q}\left ( \frac{\cos(0^\circ) \cdot 4}{1 / \sqrt{2}} \right )= {1}/{2} \cdot \left [{\rm Q}(0)+ {\rm Q}(5.66)\right] \approx 0.25\hspace{0.1cm}\underline {= 25 \, \%}.$$

Das heißt: Die Fehlentscheidung für das erste Bit ist $50\%$. Dagegen wird das zweite Bit nahezu fehlerfrei $(\approx 10^{–8})$ entschieden. Insgesamt ergibt sich so eine mittlere Fehlerwahrscheinlichkeit von ca. $25\%$.