Difference between revisions of "Aufgaben:Exercise 1.5: Drawing Cards"
Line 56: | Line 56: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Bei jeder Karte ist die Wahrscheinlichkeit für ein Ass genau gleich groß $(1/8)$: | + | '''(1)''' Bei jeder Karte ist die Wahrscheinlichkeit für ein Ass genau gleich groß $(1/8)$: |
:$$p_{\rm 1} = {\rm Pr} (3 \hspace{0.1cm} {\rm Asse}) = {\rm Pr} (A_{\rm 1})\cdot {\rm Pr} (A_{\rm 2})\cdot {\rm Pr}(A_{\rm 3}) = \rm ({1}/{8})^3 \hspace{0.15cm}\underline {\approx 0.002}.$$ | :$$p_{\rm 1} = {\rm Pr} (3 \hspace{0.1cm} {\rm Asse}) = {\rm Pr} (A_{\rm 1})\cdot {\rm Pr} (A_{\rm 2})\cdot {\rm Pr}(A_{\rm 3}) = \rm ({1}/{8})^3 \hspace{0.15cm}\underline {\approx 0.002}.$$ | ||
+ | |||
'''(2)''' Nun erhält man mit dem allgemeinen Multiplikationstheorem: | '''(2)''' Nun erhält man mit dem allgemeinen Multiplikationstheorem: | ||
:$$p_{\rm 2} = {\rm Pr} (A_{\rm 1}\cap A_{\rm 2} \cap A_{\rm 3} ) = {\rm Pr} (A_{\rm 1}) \cdot {\rm Pr} (A_{\rm 2}\hspace{0.05cm}|\hspace{0.05cm}A_{\rm 1} ) \cdot {\rm Pr} \big[A_{\rm 3} \hspace{0.05cm}|\hspace{0.05cm}( A_{\rm 1}\cap A_{\rm 2} )\big].$$ | :$$p_{\rm 2} = {\rm Pr} (A_{\rm 1}\cap A_{\rm 2} \cap A_{\rm 3} ) = {\rm Pr} (A_{\rm 1}) \cdot {\rm Pr} (A_{\rm 2}\hspace{0.05cm}|\hspace{0.05cm}A_{\rm 1} ) \cdot {\rm Pr} \big[A_{\rm 3} \hspace{0.05cm}|\hspace{0.05cm}( A_{\rm 1}\cap A_{\rm 2} )\big].$$ | ||
− | Die bedingten Wahrscheinlichkeiten sind nach der klassischen Definition berechenbar. Man erhält hierfür $k/m$ (bei $m$ Karten sind noch $k$ Asse | + | *Die bedingten Wahrscheinlichkeiten sind nach der klassischen Definition berechenbar. Man erhält hierfür $k/m$ (bei $m$ Karten sind noch $k$ Asse im Stapel): |
:$$p_{\rm 2} ={4}/{32}\cdot {3}/{31}\cdot{2}/{30} \hspace{0.15cm}\underline { \approx 0.0008}.$$ | :$$p_{\rm 2} ={4}/{32}\cdot {3}/{31}\cdot{2}/{30} \hspace{0.15cm}\underline { \approx 0.0008}.$$ | ||
− | Man erkennt: $p_2$ ist kleiner als $p_1$, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor. | + | *Man erkennt: $p_2$ ist kleiner als $p_1$, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor. |
+ | |||
− | '''(3)''' Analog zur Teilaufgabe '''(2)''' erhält man hier: | + | '''(3)''' Analog zur Teilaufgabe '''(2)''' erhält man hier: |
:$$p_{\rm 3} = {\rm Pr}(\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{A_{\rm 1}} \cap \overline{A_{\rm 2}} )) = {28}/{32}\cdot{27}/{31}\cdot {26}/{30}\hspace{0.15cm}\underline {\approx 0.6605}.$$ | :$$p_{\rm 3} = {\rm Pr}(\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{A_{\rm 1}} \cap \overline{A_{\rm 2}} )) = {28}/{32}\cdot{27}/{31}\cdot {26}/{30}\hspace{0.15cm}\underline {\approx 0.6605}.$$ | ||
+ | |||
'''(4)''' Diese Wahrscheinlichkeit kann man als Summe dreier Wahrscheinlichkeiten ausdrücken, da die zugehörigen Ereignisse disjunkt sind: | '''(4)''' Diese Wahrscheinlichkeit kann man als Summe dreier Wahrscheinlichkeiten ausdrücken, da die zugehörigen Ereignisse disjunkt sind: | ||
:$$p_{\rm 4} = {\rm Pr} (D_{\rm 1} \cup D_{\rm 2} \cup D_{\rm 3}) \rm \hspace{0.1cm}mit\hspace{-0.1cm}:$$ | :$$p_{\rm 4} = {\rm Pr} (D_{\rm 1} \cup D_{\rm 2} \cup D_{\rm 3}) \rm \hspace{0.1cm}mit\hspace{-0.1cm}:$$ | ||
− | :$$ {\rm Pr} (D_{\rm 1}) = {\rm Pr}( A_{\rm 1} \cap \overline{ A_{\rm 2}} \cap \overline{A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$ | + | ::$$ {\rm Pr} (D_{\rm 1}) = {\rm Pr}( A_{\rm 1} \cap \overline{ A_{\rm 2}} \cap \overline{A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$ |
− | :$${\rm Pr} (D_{\rm 2}) = \rm Pr ( \overline{A_{\rm 1}} \cap A_{\rm 2} \cap \overline{A_{\rm 3}}) = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot \frac{27}{30}=\rm 0.1016,$$ | + | ::$${\rm Pr} (D_{\rm 2}) = \rm Pr ( \overline{A_{\rm 1}} \cap A_{\rm 2} \cap \overline{A_{\rm 3}}) = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot \frac{27}{30}=\rm 0.1016,$$ |
− | :$${\rm Pr} (D_{\rm 3} \rm) = Pr ( \overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} \cap A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$ | + | ::$${\rm Pr} (D_{\rm 3} \rm) = Pr ( \overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} \cap A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$ |
− | Diese Wahrscheinlichkeiten sind alle gleich – warum sollte es auch anders sein? | + | *Diese Wahrscheinlichkeiten sind alle gleich – warum sollte es auch anders sein? |
*Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht. | *Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht. | ||
− | Damit erhält man für die Summe $p_4 \; \underline{= 0.3048}$. | + | *Damit erhält man für die Summe $p_4 \; \underline{= 0.3048}$. |
+ | |||
− | '''(5)''' Definiert man die Ereignisse $E_i :=$ „Es werden bei drei Karten genau $i$ Asse gezogen” mit | + | '''(5)''' Definiert man die Ereignisse $E_i :=$ „Es werden bei drei Karten genau $i$ Asse gezogen” mit Index $i \in \{ 0, 1, 2, 3 \}$, <br> so beschreiben $E_0$, $E_1$, $E_2$ und $E_3$ ein vollständiges System. Deshalb gilt: |
:$$p_{\rm 5} = {\rm Pr}(E_2) = 1 - {\rm Pr}(E_0) -{\rm Pr}(E_1) - {\rm Pr}(E_3) = 1 - p_3 -p_4 - p_2 \hspace{0.15cm}\underline {= \rm 0.0339}.$$ | :$$p_{\rm 5} = {\rm Pr}(E_2) = 1 - {\rm Pr}(E_0) -{\rm Pr}(E_1) - {\rm Pr}(E_3) = 1 - p_3 -p_4 - p_2 \hspace{0.15cm}\underline {= \rm 0.0339}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 17:29, 9 November 2019
Aus einem Kartenspiel mit $32$ Karten, darunter vier Asse, werden nacheinander drei Karten gezogen.
- Für die Teilaufgabe (1) wird vorausgesetzt, dass nach dem Ziehen einer Karte diese in den Stapel zurückgelegt wird, danach der Kartenstapel neu gemischt und die nächste Karte gezogen wird.
- Dagegen sollen Sie für die weiteren Teilaufgaben ab (2) davon ausgehen, dass die drei Karten auf einmal gezogen werden („Ziehen ohne Zurücklegen“).
Im Folgenden bezeichnen wir mit $A_i$ das Ereignis, dass die zum Zeitpunkt $i$ gezogene Karte ein Ass ist. Hierbei ist $i \in \{ 1, 2, 3 \}$. Das Komplementärereignis sagt dann aus, dass zum Zeitpunkt $i$ irgend eine andere Karte als ein Ass gezogen wird.
Hinweise:
- Die Aufgabe gehört zum Kapitel Statistische Abhängigkeit und Unabhängigkeit.
- Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo
Fragebogen
Musterlösung
- $$p_{\rm 1} = {\rm Pr} (3 \hspace{0.1cm} {\rm Asse}) = {\rm Pr} (A_{\rm 1})\cdot {\rm Pr} (A_{\rm 2})\cdot {\rm Pr}(A_{\rm 3}) = \rm ({1}/{8})^3 \hspace{0.15cm}\underline {\approx 0.002}.$$
(2) Nun erhält man mit dem allgemeinen Multiplikationstheorem:
- $$p_{\rm 2} = {\rm Pr} (A_{\rm 1}\cap A_{\rm 2} \cap A_{\rm 3} ) = {\rm Pr} (A_{\rm 1}) \cdot {\rm Pr} (A_{\rm 2}\hspace{0.05cm}|\hspace{0.05cm}A_{\rm 1} ) \cdot {\rm Pr} \big[A_{\rm 3} \hspace{0.05cm}|\hspace{0.05cm}( A_{\rm 1}\cap A_{\rm 2} )\big].$$
- Die bedingten Wahrscheinlichkeiten sind nach der klassischen Definition berechenbar. Man erhält hierfür $k/m$ (bei $m$ Karten sind noch $k$ Asse im Stapel):
- $$p_{\rm 2} ={4}/{32}\cdot {3}/{31}\cdot{2}/{30} \hspace{0.15cm}\underline { \approx 0.0008}.$$
- Man erkennt: $p_2$ ist kleiner als $p_1$, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor.
(3) Analog zur Teilaufgabe (2) erhält man hier:
- $$p_{\rm 3} = {\rm Pr}(\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{A_{\rm 1}} \cap \overline{A_{\rm 2}} )) = {28}/{32}\cdot{27}/{31}\cdot {26}/{30}\hspace{0.15cm}\underline {\approx 0.6605}.$$
(4) Diese Wahrscheinlichkeit kann man als Summe dreier Wahrscheinlichkeiten ausdrücken, da die zugehörigen Ereignisse disjunkt sind:
- $$p_{\rm 4} = {\rm Pr} (D_{\rm 1} \cup D_{\rm 2} \cup D_{\rm 3}) \rm \hspace{0.1cm}mit\hspace{-0.1cm}:$$
- $$ {\rm Pr} (D_{\rm 1}) = {\rm Pr}( A_{\rm 1} \cap \overline{ A_{\rm 2}} \cap \overline{A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
- $${\rm Pr} (D_{\rm 2}) = \rm Pr ( \overline{A_{\rm 1}} \cap A_{\rm 2} \cap \overline{A_{\rm 3}}) = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
- $${\rm Pr} (D_{\rm 3} \rm) = Pr ( \overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} \cap A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
- Diese Wahrscheinlichkeiten sind alle gleich – warum sollte es auch anders sein?
- Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht.
- Damit erhält man für die Summe $p_4 \; \underline{= 0.3048}$.
(5) Definiert man die Ereignisse $E_i :=$ „Es werden bei drei Karten genau $i$ Asse gezogen” mit Index $i \in \{ 0, 1, 2, 3 \}$,
so beschreiben $E_0$, $E_1$, $E_2$ und $E_3$ ein vollständiges System. Deshalb gilt:
- $$p_{\rm 5} = {\rm Pr}(E_2) = 1 - {\rm Pr}(E_0) -{\rm Pr}(E_1) - {\rm Pr}(E_3) = 1 - p_3 -p_4 - p_2 \hspace{0.15cm}\underline {= \rm 0.0339}.$$