Difference between revisions of "Aufgaben:Exercise 2.7Z: C Program "z3""

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID123__Sto_Z_2_7.png|right|frame| C-Programm $z3$ zur Generierung einer Binomialverteilung]]
+
[[File:P_ID123__Sto_Z_2_7.png|right|frame| C-Programm&nbsp; $z3$&nbsp; zur Generierung <br>einer Binomialverteilung]]
Das nebenstehend angegebene C-Programm  $z3$ erzeugt sukzessive eine binomialverteilte Zufallsgr&ouml;&szlig;e mit den charakteristischen Kenngr&ouml;&szlig;en $l$ und $p$. Es verwendet dabei das Programm $z1$, das bereits in [[Aufgaben:2.7_C-Programme_z1_und_z2|Aufgabe 2.7]] beschrieben und analysiert wurde.
+
Das nebenstehend angegebene C-Programm&nbsp; $z3$&nbsp; erzeugt sukzessive eine binomialverteilte Zufallsgr&ouml;&szlig;e mit den charakteristischen Kenngr&ouml;&szlig;en&nbsp; $I$&nbsp; und&nbsp; $p$.&nbsp;
 +
*Es verwendet dabei das Programm&nbsp; $z1$, das bereits in&nbsp; [[Aufgaben:2.7_C-Programme_z1_und_z2|Aufgabe 2.7]]&nbsp; beschrieben und analysiert wurde.
 +
*Gehen Sie davon aus, dass das Programm mit den Parametern&nbsp; $I = 4$&nbsp; und&nbsp; $p = 0.75$&nbsp; aufgerufen wird.
 +
*Die ersten acht vom Zufallsgenerator&nbsp; $\text{random()}$&nbsp; erzeugten reellwertigen Zahlen&nbsp; (alle zwischen Null und Eins)&nbsp; lauten:
 +
:$$\rm 0.75, \ 0.19, \ 0.43, \ 0.08, \ 0.99, \ 0.32, \ 0.53, \ 0.02.$$
 +
 
  
  
Gehen Sie davon aus, dass das Programm mit den Parametern $l = 4$ und $p = 0.75$ aufgerufen wird. Die ersten acht vom Zufallsgenerator $\text{random()}$ erzeugten reellwertigen Zahlen (alle zwischen Null und Eins) lauten:
 
:$$\rm 0.75, \ 0.19, \ 0.43, \ 0.08, \ 0.99, \ 0.32, \ 0.53, \ 0.02.$$
 
  
  
Line 15: Line 18:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Erzeugung_von_diskreten_Zufallsgrößen|Erzeugung von diskreten Zufallsgrößen]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Erzeugung_von_diskreten_Zufallsgrößen|Erzeugung von diskreten Zufallsgrößen]].
*Bezug genommen wird aber auch auf das Kapitel [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]].
+
*Bezug genommen wird auch auf das Kapitel&nbsp; [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]].
 
   
 
   
  
Line 23: Line 26:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
+ $z3$ liefert eine binomialverteilte Zufallsgr&ouml;&szlig;e, weil mehrere Bin&auml;rwerte aufsummiert werden.
+
+ $z3$&nbsp; liefert eine binomialverteilte Zufallsgr&ouml;&szlig;e, weil mehrere Bin&auml;rwerte aufsummiert werden.
+ Zur Parameterübergabe  an das Programm $z1$ wird das Feld $\text{p_array} = \big [1-p, \ \ p \big]$ benutzt.
+
+ Zur Parameterübergabe  an das Programm $z1$ wird das Feld&nbsp; $\text{p_array} = \big [1-p, \ \ p \big]$&nbsp; benutzt.
+ Die &Uuml;bergabe von $M=2$ muss mit &bdquo;$\rm 2L$&rdquo; geschehen, da $z1$ einen Long-Wert erwartet.
+
+ Die &Uuml;bergabe von&nbsp; $M=2$&nbsp; muss mit &bdquo;$\rm 2L$&rdquo; geschehen, da&nbsp; $z1$&nbsp; einen Long-Wert erwartet.
  
  
{Welcher Wert wird beim <u>ersten Aufruf</u> von $z3$ ausgegeben?
+
{Welcher Wert wird beim&nbsp; <u>ersten Aufruf</u>&nbsp; von&nbsp; $z3$&nbsp; ausgegeben?
 
|type="{}"}
 
|type="{}"}
 
$z3 \ = \ $  { 2 }
 
$z3 \ = \ $  { 2 }
  
  
{Welcher Wert wird beim zweiten <u>Aufruf</u> von $z3$ ausgegeben?
+
{Welcher Wert wird beim&nbsp; <u>zweiten Aufruf</u>&nbsp; von&nbsp; $z3$&nbsp; ausgegeben?
 
|type="{}"}
 
|type="{}"}
 
$z3 \ = \ $ { 3 }
 
$z3 \ = \ $ { 3 }

Revision as of 13:19, 14 November 2019

C-Programm  $z3$  zur Generierung
einer Binomialverteilung

Das nebenstehend angegebene C-Programm  $z3$  erzeugt sukzessive eine binomialverteilte Zufallsgröße mit den charakteristischen Kenngrößen  $I$  und  $p$. 

  • Es verwendet dabei das Programm  $z1$, das bereits in  Aufgabe 2.7  beschrieben und analysiert wurde.
  • Gehen Sie davon aus, dass das Programm mit den Parametern  $I = 4$  und  $p = 0.75$  aufgerufen wird.
  • Die ersten acht vom Zufallsgenerator  $\text{random()}$  erzeugten reellwertigen Zahlen  (alle zwischen Null und Eins)  lauten:
$$\rm 0.75, \ 0.19, \ 0.43, \ 0.08, \ 0.99, \ 0.32, \ 0.53, \ 0.02.$$





Hinweise:


Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

$z3$  liefert eine binomialverteilte Zufallsgröße, weil mehrere Binärwerte aufsummiert werden.
Zur Parameterübergabe an das Programm $z1$ wird das Feld  $\text{p_array} = \big [1-p, \ \ p \big]$  benutzt.
Die Übergabe von  $M=2$  muss mit „$\rm 2L$” geschehen, da  $z1$  einen Long-Wert erwartet.

2

Welcher Wert wird beim  ersten Aufruf  von  $z3$  ausgegeben?

$z3 \ = \ $

3

Welcher Wert wird beim  zweiten Aufruf  von  $z3$  ausgegeben?

$z3 \ = \ $


Musterlösung

(1)  Alle drei Aussagen sind richtig.


(2)  Die reellwertigen Zufallszahlen $0.75$, $0.19$, $0.43$ und $0.08$ werden jeweils mit $0.25$ verglichen und führen zu den Binärwerten $1, 0, 1, 0$.
Das ergibt im ersten Aufruf die Summe $\underline{z3 = 2}$.


(3)  Analog zum Ergebnis der Teilaufgabe (2) treten nun wegen der Zufallswerte $0.99$, $0.32$, $0.53$ und $0.02$ die Binärwerte $1, 1, 1, 0$ auf.
Dies führt zum Ausgabewert $\underline{z3 = 3}$ (wiederum Summe der Binärwerte).