Difference between revisions of "Aufgaben:Exercise 2.7Z: C Program "z3""

From LNTwww
Line 48: Line 48:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Alle drei</u> Aussagen sind richtig.
+
'''(1)'''&nbsp; <u>Alle drei Aussagen</u> sind richtig.
  
  
  
'''(2)'''&nbsp; Die reellwertigen Zufallszahlen $0.75$, $0.19$, $0.43$ und $0.08$ werden jeweils mit $0.25$ verglichen und f&uuml;hren zu den Bin&auml;rwerten $1, 0, 1, 0$. <br>Das ergibt im ersten Aufruf die Summe $\underline{z3 = 2}$.
+
'''(2)'''&nbsp; Die reellwertigen Zufallszahlen&nbsp; $0.75$,&nbsp; $0.19$,&nbsp; $0.43$&nbsp; und&nbsp; $0.08$&nbsp; werden jeweils mit&nbsp; $0.25$&nbsp; verglichen.
 +
*Dieser Vergleich f&uuml;hrt zu den Bin&auml;rwerten&nbsp; $1, \ 0, \ 1, \ 0$.  
 +
*Das ergibt im ersten Aufruf die Summe&nbsp; $\underline{z3 = 2}$.
  
  
  
'''(3)'''&nbsp; Analog zum Ergebnis der Teilaufgabe '''(2)''' treten nun wegen der Zufallswerte $0.99$, $0.32$, $0.53$ und $0.02$ die Bin&auml;rwerte $1, 1, 1, 0$ auf. <br>Dies f&uuml;hrt zum Ausgabewert $\underline{z3 = 3}$ (wiederum Summe der Binärwerte).
+
'''(3)'''&nbsp; Analog zum Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; treten nun wegen der Zufallswerte&nbsp; $0.99$,&nbsp; $0.32$,&nbsp; $0.53$&nbsp; und&nbsp; $0.02$&nbsp; die Bin&auml;rwerte&nbsp; $1, \ 1, \ 1, \ 0$&nbsp; auf.  
 +
*Dies f&uuml;hrt zum Ausgabewert&nbsp; $\underline{z3 = 3}$&nbsp; (wiederum Summe der Binärwerte).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 13:24, 14 November 2019

C-Programm  $z3$  zur Generierung
einer Binomialverteilung

Das nebenstehend angegebene C-Programm  $z3$  erzeugt sukzessive eine binomialverteilte Zufallsgröße mit den charakteristischen Kenngrößen  $I$  und  $p$. 

  • Es verwendet dabei das Programm  $z1$, das bereits in  Aufgabe 2.7  beschrieben und analysiert wurde.
  • Gehen Sie davon aus, dass das Programm mit den Parametern  $I = 4$  und  $p = 0.75$  aufgerufen wird.
  • Die ersten acht vom Zufallsgenerator  $\text{random()}$  erzeugten reellwertigen Zahlen  (alle zwischen Null und Eins)  lauten:
$$\rm 0.75, \ 0.19, \ 0.43, \ 0.08, \ 0.99, \ 0.32, \ 0.53, \ 0.02.$$





Hinweise:


Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

$z3$  liefert eine binomialverteilte Zufallsgröße, weil mehrere Binärwerte aufsummiert werden.
Zur Parameterübergabe an das Programm $z1$ wird das Feld  $\text{p_array} = \big [1-p, \ \ p \big]$  benutzt.
Die Übergabe von  $M=2$  muss mit „$\rm 2L$” geschehen, da  $z1$  einen Long-Wert erwartet.

2

Welcher Wert wird beim  ersten Aufruf  von  $z3$  ausgegeben?

$z3 \ = \ $

3

Welcher Wert wird beim  zweiten Aufruf  von  $z3$  ausgegeben?

$z3 \ = \ $


Musterlösung

(1)  Alle drei Aussagen sind richtig.


(2)  Die reellwertigen Zufallszahlen  $0.75$,  $0.19$,  $0.43$  und  $0.08$  werden jeweils mit  $0.25$  verglichen.

  • Dieser Vergleich führt zu den Binärwerten  $1, \ 0, \ 1, \ 0$.
  • Das ergibt im ersten Aufruf die Summe  $\underline{z3 = 2}$.


(3)  Analog zum Ergebnis der Teilaufgabe  (2)  treten nun wegen der Zufallswerte  $0.99$,  $0.32$,  $0.53$  und  $0.02$  die Binärwerte  $1, \ 1, \ 1, \ 0$  auf.

  • Dies führt zum Ausgabewert  $\underline{z3 = 3}$  (wiederum Summe der Binärwerte).