Difference between revisions of "Aufgaben:Exercise 3.11: Chebyshev's Inequality"

From LNTwww
Line 60: Line 60:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 2 und 3</u>:
 
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 2 und 3</u>:
*Die erste Aussage ist falsch. Die Tschebyscheffsche Ungleichung liefert hier die Schranke $1/9$.  
+
*Die erste Aussage ist falsch.&nbsp; Die Tschebyscheffsche Ungleichung liefert hier die Schranke&nbsp; $1/9$.  
*Bei keiner Verteilung kann die hier betrachtete Wahrscheinlichkeit gleich $1/4$ sein.  
+
*Bei keiner Verteilung kann die hier betrachtete Wahrscheinlichkeit gleich&nbsp; $1/4$&nbsp; sein.  
*Für $\varepsilon < \sigma_x$ liefert Tschebyscheff eine Wahrscheinlichkeit gr&ouml;&szlig;er als $1$. Diese Information ist  nutzlos.
+
*Für&nbsp; $\varepsilon < \sigma_x$&nbsp; liefert Tschebyscheff eine Wahrscheinlichkeit gr&ouml;&szlig;er als&nbsp; $1$.&nbsp; Diese Information ist  nutzlos.
*Die letzte Aussage ist zutreffend. Beispielsweise gilt bei der Gleichverteilung:
+
*Die letzte Aussage ist zutreffend.&nbsp; Beispielsweise gilt bei der Gleichverteilung:
 
:$${\rm Pr}(| x- m_x | \ge \varepsilon)=\left\{ \begin{array}{*{4}{c}} 1-{\varepsilon}/{\varepsilon_{\rm 0}} & \rm f\ddot{u}r\hspace{0.1cm}{\it \varepsilon<\varepsilon_{\rm 0}=\sqrt{\rm 3}\cdot\sigma_x},\\\rm 0 & \rm sonst. \end{array} \right. $$
 
:$${\rm Pr}(| x- m_x | \ge \varepsilon)=\left\{ \begin{array}{*{4}{c}} 1-{\varepsilon}/{\varepsilon_{\rm 0}} & \rm f\ddot{u}r\hspace{0.1cm}{\it \varepsilon<\varepsilon_{\rm 0}=\sqrt{\rm 3}\cdot\sigma_x},\\\rm 0 & \rm sonst. \end{array} \right. $$
 
  
 
'''(2)'''&nbsp; Bei der Gau&szlig;verteilung gilt:
 
'''(2)'''&nbsp; Bei der Gau&szlig;verteilung gilt:
 
:$$p_k={\rm Pr}(| x-m_x| \ge k\cdot\sigma_{x})=\rm 2\cdot \rm Q(\it k).$$
 
:$$p_k={\rm Pr}(| x-m_x| \ge k\cdot\sigma_{x})=\rm 2\cdot \rm Q(\it k).$$
  
Daraus ergeben sich folgende Zahlenwerte (in Klammern: &nbsp; Schranke nach Tschebyscheff):
+
*Daraus ergeben sich folgende Zahlenwerte&nbsp; (in Klammern: &nbsp; Schranke nach Tschebyscheff):
 
:$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) = 31.7 \% \hspace{0.3cm}(100 \%),$$
 
:$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) = 31.7 \% \hspace{0.3cm}(100 \%),$$
 
:$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x}) = 4.54 \% \hspace{0.3cm}(25 \%),$$
 
:$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x}) = 4.54 \% \hspace{0.3cm}(25 \%),$$
Line 76: Line 75:
 
:$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = 0.0064 \% \hspace{0.3cm}(6.25 \%).$$
 
:$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = 0.0064 \% \hspace{0.3cm}(6.25 \%).$$
  
 
+
'''(3)'''&nbsp; Ohne Einschr&auml;nkung der Allgemeing&uuml;ltigkeit setzen wir&nbsp; $\lambda = 1$  
'''(3)'''&nbsp; Ohne Einschr&auml;nkung der Allgemeing&uuml;ltigkeit setzen wir $\lambda; = 1$  
+
&nbsp; &#8658; &nbsp; $m_x = \sigma_x = 1$.&nbsp; Dann gilt:
&nbsp; &#8658; &nbsp; $m_x = \sigma_x = 1$. Dann gilt:
 
 
:$${\rm Pr}(|x - m_x| \ge  k\cdot\sigma_{x}) = {\rm Pr}(| x-1| \ge  k).$$
 
:$${\rm Pr}(|x - m_x| \ge  k\cdot\sigma_{x}) = {\rm Pr}(| x-1| \ge  k).$$
  
Da in diesem Sonderfall die Zufallsgröße stets $x >0$ ist, gilt weiter:
+
*Da in diesem Sonderfall die Zufallsgröße stets&nbsp; $x >0$&nbsp; ist, gilt weiter:
 
:$$p_k= {\rm Pr}( x \ge k+1)=\int_{k+\rm 1}^{\infty}\hspace{-0.15cm}
 
:$$p_k= {\rm Pr}( x \ge k+1)=\int_{k+\rm 1}^{\infty}\hspace{-0.15cm}
 
{\rm e}^{-x}\, {\rm d} x={\rm e}^{-( k + 1)}.$$
 
{\rm e}^{-x}\, {\rm d} x={\rm e}^{-( k + 1)}.$$
  
Daraus ergeben sich folgende Zahlenwerte für die Exponentialverteilung:
+
*Daraus ergeben sich für die Exponentialverteilung folgende Zahlenwerte:
 
:$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x})  \rm e^{-2}= \rm 13.53\%,$$
 
:$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x})  \rm e^{-2}= \rm 13.53\%,$$
 
:$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x})= \rm \rm e^{-3}=\rm 4.97\% ,$$
 
:$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x})= \rm \rm e^{-3}=\rm 4.97\% ,$$

Revision as of 14:33, 25 November 2019

Beispielhafte Tschebyscheffsch–Schranke

Ist über eine Zufallsgröße  $x$  nichts weiter bekannt als nur

  • der Mittelwert  $m_x$  und
  • die Streuung  $\sigma_x$,


so gibt die  Tschebyscheffsche Ungleichung  eine obere Schranke für die Wahrscheinlichkeit an, dass  $x$  betragsmäßig mehr als einen Wert  $\varepsilon$  von seinem Mittelwert  $m_x$  abweicht.

Diese Schranke lautet:

$${\rm Pr}(|x-m_x|\ge \varepsilon) \le {\sigma_x^{\rm 2}}/{\varepsilon^{\rm 2}}.$$

Zur Erläuterung:

  • In der Grafik ist diese obere Schranke rot eingezeichnet.
  • Der grüne Kurvenverlauf zeigt die tatsächliche Wahrscheinlichkeit bei der Gleichverteilung.
  • Die blauen Punkte gelten für die Exponentialverteilung.


Aus dieser Darstellung ist zu erkennen, dass die  Tschebyscheffsche Ungleichung  nur eine sehr grobe Schranke darstellt. 
Sie sollte nur dann verwendet werden, wenn von der Zufallsgröße wirklich nur der Mittelwert und die Streuung bekannt sind.

Werte der komplementären Gaußschen Fehlerfunktion


Hinweise:

  • Rechts sind Werte der komplementären Gaußschen Fehlerfunktion  ${\rm Q}_x$  angegeben.



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

Vorstellbar ist eine Zufallsgröße mit  ${\rm Pr}(|x -m_x> | \ge 3\sigma_x) = 1/4$.
„Tschebyscheff” liefert für  $\varepsilon < \sigma_x$  keine Information.
${\rm Pr}(|x -m_x> | \ge \sigma_x)$  ist für große  $\varepsilon$  identisch Null, wenn  $x$  begrenzt ist.

2

Es gelte  $k = 1, \ 2, \ 3, \ 4$.  Geben Sie die Überschreitungswahrscheinlichkeit  $p_k = {\rm Pr}(|x -m_x | \ge k \cdot \sigma_x)$  für die Gaußverteilung an.  Wie groß ist  $p_3$?

${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $

$\ \%$

3

Welche Überschreitungswahrscheinlichkeiten  $p_k$  ergeben sich bei der  Exponentialverteilung.  Hier gilt   $m_x = \sigma_x = 1/\lambda$.  Wie groß ist  $p_3$?

${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $

$\ \%$


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Die erste Aussage ist falsch.  Die Tschebyscheffsche Ungleichung liefert hier die Schranke  $1/9$.
  • Bei keiner Verteilung kann die hier betrachtete Wahrscheinlichkeit gleich  $1/4$  sein.
  • Für  $\varepsilon < \sigma_x$  liefert Tschebyscheff eine Wahrscheinlichkeit größer als  $1$.  Diese Information ist nutzlos.
  • Die letzte Aussage ist zutreffend.  Beispielsweise gilt bei der Gleichverteilung:
$${\rm Pr}(| x- m_x | \ge \varepsilon)=\left\{ \begin{array}{*{4}{c}} 1-{\varepsilon}/{\varepsilon_{\rm 0}} & \rm f\ddot{u}r\hspace{0.1cm}{\it \varepsilon<\varepsilon_{\rm 0}=\sqrt{\rm 3}\cdot\sigma_x},\\\rm 0 & \rm sonst. \end{array} \right. $$

(2)  Bei der Gaußverteilung gilt:

$$p_k={\rm Pr}(| x-m_x| \ge k\cdot\sigma_{x})=\rm 2\cdot \rm Q(\it k).$$
  • Daraus ergeben sich folgende Zahlenwerte  (in Klammern:   Schranke nach Tschebyscheff):
$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) = 31.7 \% \hspace{0.3cm}(100 \%),$$
$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x}) = 4.54 \% \hspace{0.3cm}(25 \%),$$
$$k= 3\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 3 \cdot\sigma_{x})\hspace{0.15cm}\underline{ = 0.26 \%} \hspace{0.3cm}(11.1 \%),$$
$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = 0.0064 \% \hspace{0.3cm}(6.25 \%).$$

(3)  Ohne Einschränkung der Allgemeingültigkeit setzen wir  $\lambda = 1$   ⇒   $m_x = \sigma_x = 1$.  Dann gilt:

$${\rm Pr}(|x - m_x| \ge k\cdot\sigma_{x}) = {\rm Pr}(| x-1| \ge k).$$
  • Da in diesem Sonderfall die Zufallsgröße stets  $x >0$  ist, gilt weiter:
$$p_k= {\rm Pr}( x \ge k+1)=\int_{k+\rm 1}^{\infty}\hspace{-0.15cm} {\rm e}^{-x}\, {\rm d} x={\rm e}^{-( k + 1)}.$$
  • Daraus ergeben sich für die Exponentialverteilung folgende Zahlenwerte:
$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) \rm e^{-2}= \rm 13.53\%,$$
$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x})= \rm \rm e^{-3}=\rm 4.97\% ,$$
$$k= 3\text\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 3 \cdot\sigma_{x})= \rm \rm e^{-4}\hspace{0.15cm}\underline{ =\rm 1.83\% },$$
$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = \rm e^{-5}= \rm 0.67\%.$$