Difference between revisions of "Aufgaben:Exercise 2.5Z: Compression Factor vs. Residual Redundancy"

From LNTwww
Line 4: Line 4:
  
 
[[File:P_ID2449__Inf_Z_2_5_neu.png|right|frame|Datenlänge $L(N)$  nach LZW–Codierung für $\rm BQ1$ und $\rm BQ2$]]
 
[[File:P_ID2449__Inf_Z_2_5_neu.png|right|frame|Datenlänge $L(N)$  nach LZW–Codierung für $\rm BQ1$ und $\rm BQ2$]]
Wir betrachten wie in der [[Aufgaben:2.5_Restredundanz_bei_LZW-Codierung|Aufgabe 2.5]] die Datenkomprimierung mit dem 1983 veröffentlichten [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Der_Lempel.E2.80.93Ziv.E2.80.93Welch.E2.80.93Algorithmus|Lempel–Ziv–Welch–Algorithmus]]. Dabei gilt:
+
Wir betrachten wie in der  [[Aufgaben:2.5_Restredundanz_bei_LZW-Codierung|Aufgabe 2.5]]  die Datenkomprimierung mit dem 1983 veröffentlichten  [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Der_Lempel.E2.80.93Ziv.E2.80.93Welch.E2.80.93Algorithmus|Lempel–Ziv–Welch–Algorithmus]]. Dabei gilt:
* Die Eingangsfolge habe die Länge $N$.
+
* Die Eingangsfolge habe die Länge  $N$.
* Die Länge der LZW–Coderausgabe ist $L$.
+
* Die Länge der LZW–Coderausgabe ist  $L$.
  
  
Die Grafik zeigt für zwei verschiedene binäre Nachrichtenquellen $\rm BQ1$ und $\rm BQ2$ den Zusammenhang zwischen den Folgenlängen $N$ und $L$, dargestellt durch den Funktionsverlauf $L(N)$. Die beiden Nachrichtenquellen besitzen die gleichen statistischen Eigenschaften wie in der [[Aufgaben:Aufgabe_2.5:_Restredundanz_bei_LZW-Codierung|Aufgabe 2.5]]:
+
Die Grafik zeigt für zwei verschiedene Binärquellen  $\rm BQ1$  und  $\rm BQ2$  den Zusammenhang zwischen den Folgenlängen  $N$  und  $L$, dargestellt durch den Funktionsverlauf  $L(N)$. 
* $\rm BQ1$ ist aufgrund von ungleichen Symbolwahrscheinlichkeiten $(p_{\rm A} = 0.89$ und $p_{\rm B} = 0.11)$ redundant. Es bestehen keine Bindungen zwischen den einzelnen Symbolen. Die Entropie ist $H = 0.5$ bit/Quellensymbol.
+
 
* $\rm BQ2$  ist redundanzfrei und weist die Entropie $H = 1$ bit/Quellensymbol auf.
+
Die beiden Nachrichtenquellen besitzen die gleichen statistischen Eigenschaften wie in der  [[Aufgaben:Aufgabe_2.5:_Restredundanz_bei_LZW-Codierung|Aufgabe 2.5]]:
 +
* $\rm BQ1$  ist aufgrund von ungleichen Symbolwahrscheinlichkeiten  $(p_{\rm A} = 0.89$  und  $p_{\rm B} = 0.11)$  redundant.  Es bestehen keine Bindungen zwischen den einzelnen Symbolen.  Die Entropie ist  $H = 0.5$ bit/Quellensymbol.
 +
* $\rm BQ2$  ist redundanzfrei und weist somit die Entropie  $H = 1$ bit/Quellensymbol auf.
  
  
 
Weiter benötigen Sie für die Lösung dieser Aufagbe noch zwei Definitionen:
 
Weiter benötigen Sie für die Lösung dieser Aufagbe noch zwei Definitionen:
* Der <i>Komprimierungsfaktor</i> ist definitionsgemäß  
+
* Der <i>Komprimierungsfaktor</i> sei definitionsgemäß  
 
:$$K(N) = \frac{L(N)}{N}\hspace{0.05cm}.$$
 
:$$K(N) = \frac{L(N)}{N}\hspace{0.05cm}.$$
* Die relative Redundanz der LZW&ndash;Coderfolge (im Folgenden <i>Restredundanz</i> genannt) ist
+
* Die relative Redundanz der LZW&ndash;Coderfolge&nbsp; (im Folgenden&nbsp; <i>Restredundanz</i>&nbsp; genannt)&nbsp; ist
 
:$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 -  \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$
 
:$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 -  \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$
 +
 +
  
  
Line 26: Line 30:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch|Komprimierung nach Lempel, Ziv und Welch]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch|Komprimierung nach Lempel, Ziv und Welch]].
 
*Insbesondere wird  Bezug genommen auf die Seiten
 
*Insbesondere wird  Bezug genommen auf die Seiten
 
:: [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Restredundanz_als_Ma.C3.9F_f.C3.BCr_die_Effizienz_von_Codierverfahren|Restredrundanz als Maß für die Effizienz von Codierverfahren]],
 
:: [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Restredundanz_als_Ma.C3.9F_f.C3.BCr_die_Effizienz_von_Codierverfahren|Restredrundanz als Maß für die Effizienz von Codierverfahren]],
Line 37: Line 41:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Komprimierungfaktoren $K(N)$ ergeben sich mit $N = 10000$?
+
{Welche Komprimierungfaktoren&nbsp; $K(N)$&nbsp; ergeben sich mit&nbsp; $N = 10000$?
 
|type="{}"}
 
|type="{}"}
 
$\rm BQ1$: &nbsp; &nbsp; $K(N = 10000) \ = \ $ { 0.68 3% }
 
$\rm BQ1$: &nbsp; &nbsp; $K(N = 10000) \ = \ $ { 0.68 3% }
Line 43: Line 47:
  
  
{Wie groß ist die Restredundanz  $r(N)$ (in Prozent)? Es gelte wieder $N = 10000$.
+
{Wie groß ist die Restredundanz&nbsp; $r(N)$&nbsp; (in Prozent)?&nbsp; Es gelte wieder&nbsp; $N = 10000$.
 
|type="{}"}
 
|type="{}"}
 
$\rm BQ1$: &nbsp; &nbsp; $r(N = 10000) \ = \  $ { 26.5 3% } $\ \%$
 
$\rm BQ1$: &nbsp; &nbsp; $r(N = 10000) \ = \  $ { 26.5 3% } $\ \%$
Line 49: Line 53:
  
  
{Welche Aussagen liefert der Vergleich von $N = 10000$ und $N = 50000$?
+
{Welche Aussagen liefert der Vergleich von&nbsp; $N = 10000$&nbsp; und&nbsp; $N = 50000$?
 
|type="[]"}
 
|type="[]"}
+ Bei beiden Quellen ist $K(N = 50000)$ kleiner als $K(N = 10000)$.
+
+ Bei beiden Quellen ist&nbsp; $K(N = 50000)$&nbsp; kleiner als&nbsp; $K(N = 10000)$.
+ Bei beiden Quellen ist $r(N = 50000)$ kleiner als $r(N = 10000)$.
+
+ Bei beiden Quellen ist&nbsp; $r(N = 50000)$&nbsp; kleiner als&nbsp; $r(N = 10000)$.
- Nur bei $\rm BQ1$ ergeben sich mit $N = 50000$ günstigere Werte.
+
- Nur bei&nbsp; $\rm BQ1$&nbsp; ergeben sich mit&nbsp; $N = 50000$&nbsp; günstigere Werte.
  
  

Revision as of 13:21, 24 January 2020

Datenlänge $L(N)$ nach LZW–Codierung für $\rm BQ1$ und $\rm BQ2$

Wir betrachten wie in der  Aufgabe 2.5  die Datenkomprimierung mit dem 1983 veröffentlichten  Lempel–Ziv–Welch–Algorithmus. Dabei gilt:

  • Die Eingangsfolge habe die Länge  $N$.
  • Die Länge der LZW–Coderausgabe ist  $L$.


Die Grafik zeigt für zwei verschiedene Binärquellen  $\rm BQ1$  und  $\rm BQ2$  den Zusammenhang zwischen den Folgenlängen  $N$  und  $L$, dargestellt durch den Funktionsverlauf  $L(N)$. 

Die beiden Nachrichtenquellen besitzen die gleichen statistischen Eigenschaften wie in der  Aufgabe 2.5:

  • $\rm BQ1$  ist aufgrund von ungleichen Symbolwahrscheinlichkeiten  $(p_{\rm A} = 0.89$  und  $p_{\rm B} = 0.11)$  redundant.  Es bestehen keine Bindungen zwischen den einzelnen Symbolen.  Die Entropie ist  $H = 0.5$ bit/Quellensymbol.
  • $\rm BQ2$  ist redundanzfrei und weist somit die Entropie  $H = 1$ bit/Quellensymbol auf.


Weiter benötigen Sie für die Lösung dieser Aufagbe noch zwei Definitionen:

  • Der Komprimierungsfaktor sei definitionsgemäß
$$K(N) = \frac{L(N)}{N}\hspace{0.05cm}.$$
  • Die relative Redundanz der LZW–Coderfolge  (im Folgenden  Restredundanz  genannt)  ist
$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 - \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$





Hinweise:

Restredrundanz als Maß für die Effizienz von Codierverfahren,
Effizienz der Lempel-Ziv-Codierung sowie
Quantitative Aussagen zur asymptotischen Optimalität.


Fragebogen

1

Welche Komprimierungfaktoren  $K(N)$  ergeben sich mit  $N = 10000$?

$\rm BQ1$:     $K(N = 10000) \ = \ $

$\rm BQ2$:     $K(N = 10000) \ = \ $

2

Wie groß ist die Restredundanz  $r(N)$  (in Prozent)?  Es gelte wieder  $N = 10000$.

$\rm BQ1$:     $r(N = 10000) \ = \ $

$\ \%$
$\rm BQ2$:     $r(N = 10000) \ = \ $

$\ \%$

3

Welche Aussagen liefert der Vergleich von  $N = 10000$  und  $N = 50000$?

Bei beiden Quellen ist  $K(N = 50000)$  kleiner als  $K(N = 10000)$.
Bei beiden Quellen ist  $r(N = 50000)$  kleiner als  $r(N = 10000)$.
Nur bei  $\rm BQ1$  ergeben sich mit  $N = 50000$  günstigere Werte.


Musterlösung

(1)  Der Komprimierungsfaktor ist definiert als der Quotient der Längen von LZW–Ausgangsfolge $(L)$ und Eingangsfolge $(N = 10000)$:

$${\rm BQ1:}\hspace{0.3cm} K \hspace{0.2cm} = \hspace{0.2cm} \frac{6800}{10000}\hspace{0.15cm}\underline{= 0.680}\hspace{0.05cm},$$
$$ {\rm BQ2:}\hspace{0.3cm} K \hspace{0.2cm} = \hspace{0.2cm} \frac{12330}{10000}\hspace{0.15cm}\underline{= 1.233}\hspace{0.05cm}. $$
  • Die LZW–Codierung macht natürlich nur bei der redundanten Binärquelle $\rm BQ1$ Sinn. Hier kann die Datenmenge um $32\%$ gesenkt werden.
  • Bei der redundanzfreien Binärquelle $\rm BQ2$ führt dagegen die LZW–Codierung zu einer um $23.3\%$ größeren Datenmenge.


(2)  Aus der angegebenen Gleichung erhält man mit $N = 10000$:

$${\rm BQ1:}\hspace{0.3cm} H = 0.5\hspace{0.05cm},\hspace{0.2cm} r(N=10000) \hspace{0.2cm} = \hspace{0.2cm}1 - \frac{0.5 \cdot N}{L } = 1 - \frac{5000}{6800 } \hspace{0.15cm}\underline{\approx 26.5\,\%}\hspace{0.05cm},$$
$$ {\rm BQ2:}\hspace{0.3cm} H = 1.0\hspace{0.05cm},\hspace{0.2cm} r(N=10000) \hspace{0.2cm} = \hspace{0.2cm}1 - \frac{N}{L } = 1 - \frac{10000}{12330 } \hspace{0.15cm}\underline{\approx 19\,\%}\hspace{0.05cm}.$$
  • Die Restredundanz gibt die (relative) Redundanz der LZWQ–Ausgangsfolge an.
  • Obwohl die Quelle $\rm BQ1$ für die LZW–Codierung besser geeignet ist als die redundanzfreie Quelle $\rm BQ2$, ergibt sich bei $\rm BQ1$ wegen der Redundanz in der Eingangsfolge eine größere Restredundanz.
  • Eine kleinere Restredundanz $r(N)$ bei gegebenem $N$ sagt also nichts darüber aus, ob die LZW–Codierung für die vorliegende Quelle sinnvoll ist.
  • Hierzu muss der Komprimierungsfaktor $K(N)$ betrachtet werden. Allgemein gilt folgender Zusammenhang zwischen $r(N)$ und $K(N)$:
$$r(N) = 1 - \frac{H}{K(N)}\hspace{0.05cm},\hspace{0.5cm} K(N) = H \cdot (1- r(N)) \hspace{0.05cm}.$$


(3)  Aus der Tabelle auf der Angabenseite kann man ablesen (bzw. daraus ableiten)

  • für die redundante Binärquelle $\rm BQ1$:
$$L(N = 50000) = 32100\hspace{0.05cm},\hspace{0.5cm} K(N = 50000) = 0.642\hspace{0.05cm},\hspace{0.5cm}r(N = 50000) \hspace{0.15cm}\underline {= 22.2\,\% \hspace{0.05cm}},$$
  • für die redundanzfreie Binärquelle $\rm BQ2$:
$$L(N = 50000) = 59595\hspace{0.05cm},\hspace{0.5cm} K(N = 50000) = 1.192\hspace{0.05cm},\hspace{0.5cm}r(N = 50000) \hspace{0.15cm}\underline {= 16.1\,\% \hspace{0.05cm}}.$$

Richtig sind somit die Aussagen 1 und 2:

  • Für beide Quellen ist der Komprimierungsfaktor  $K(N)$  für  $N = 50000$  kleiner als für  $N = 10000$.
  • Gleiches gilt für die Restredundanz:   $r(N = 50000) < r(N = 10000)$.
  • Sowohl hinsichtlich  $K(N)$  als auch hinsichtlich $r(N)$ ergeben sich also bei größerem $N$ „günstigere” Werte, auch dann, wenn eigentlich wie bei der redundanzfreien Binärquelle $\rm BQ2$ die Anwendung von Lempel–Ziv zu einer Verschlechterung führt.