Difference between revisions of "Aufgaben:Exercise 4.5: Mutual Information from 2D-PDF"

From LNTwww
Line 80: Line 80:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
[[File:P_ID2887__Inf_A_4_5a.png|right|frame|„Rote” Wahrscheinlichkeitsdichtefunktionen]]
 
[[File:P_ID2887__Inf_A_4_5a.png|right|frame|„Rote” Wahrscheinlichkeitsdichtefunktionen]]
'''(1)'''  Bei der rechteckförmigen Verbund–WDF  $f_{XY}(x, y)$  gibt es  zwischen $X$ und $Y$ keine statistischen Bindungen    ⇒   $\underline{I(X;Y) = 0}$.
+
'''(1)'''  Bei der rechteckförmigen Verbund–WDF  $f_{XY}(x, y)$  gibt es  zwischen  $X$  und  $Y$  keine statistischen Bindungen    ⇒   $\underline{I(X;Y) = 0}$.
  
 
Formal lässt sich dieses Ergebnis mit der folgenden Gleichung nachweisen:
 
Formal lässt sich dieses Ergebnis mit der folgenden Gleichung nachweisen:
 
:$$I(X;Y) = h(X) \hspace{-0.05cm}+\hspace{-0.05cm} h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(XY)\hspace{0.02cm}.$$
 
:$$I(X;Y) = h(X) \hspace{-0.05cm}+\hspace{-0.05cm} h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(XY)\hspace{0.02cm}.$$
*Die rote Fläche 2D–WDF  $f_{XY}(x, y)$  ist $F = 4$. Da  $f_{XY}(x, y)$  in diesem Gebiet konstant ist und das Volumen unter  $f_{XY}(x, y)$  gleich $1$ sein muss, gilt $C = 1/F = 1/4$.  
+
*Die rote Fläche 2D–WDF  $f_{XY}(x, y)$  ist  $F = 4$.  Da  $f_{XY}(x, y)$  in diesem Gebiet konstant ist und das Volumen unter  $f_{XY}(x, y)$  gleich  $1$  sein muss, gilt für die Höhe  $C = 1/F = 1/4$.  
 
*Daraus folgt für die differentielle Verbundentropie in „bit”:
 
*Daraus folgt für die differentielle Verbundentropie in „bit”:
 
:$$h(XY) \  =  \  \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})}  
 
:$$h(XY) \  =  \  \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})}  
Line 92: Line 92:
 
  \hspace{-0.6cm} f_{XY}(x, y)  
 
  \hspace{-0.6cm} f_{XY}(x, y)  
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y = 2 \,{\rm bit}\hspace{0.05cm}.$$
 
  \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y = 2 \,{\rm bit}\hspace{0.05cm}.$$
Es ist berücksichtigt, das das Doppelintegral gleich $1$ ist. Die Pseudo&ndash;Einheit &bdquo;bit&rdquo; korrespondiert mit dem <i>Logarithmus dualis</i> &nbsp;&#8658;&nbsp; &bdquo;log<sub>2</sub>&rdquo;.  
+
*Es ist berücksichtigt, das das Doppelintegral gleich&nbsp; $1$&nbsp; ist.&nbsp; Die Pseudo&ndash;Einheit &bdquo;bit&rdquo; korrespondiert mit dem <i>Logarithmus dualis</i> &nbsp;&#8658;&nbsp; &bdquo;log<sub>2</sub>&rdquo;.  
 +
 
  
 
Weiterhin gilt:
 
Weiterhin gilt:
* Die Randwahrscheinlichkeitsdichtefunktionen &nbsp;$f_{X}(x)$&nbsp; und  &nbsp;$f_{Y}(y)$&nbsp; sind rechteckförmig &nbsp; &#8658; &nbsp; Gleichverteilung zwischen $0$ und $2$:
+
* Die Randwahrscheinlichkeitsdichtefunktionen &nbsp;$f_{X}(x)$&nbsp; und  &nbsp;$f_{Y}(y)$&nbsp; sind rechteckförmig &nbsp; &#8658; &nbsp; Gleichverteilung zwischen&nbsp; $0$&nbsp; und&nbsp; $2$:
 
:$$h(X) = h(Y) = {\rm log}_2 \hspace{0.1cm} (2) = 1 \,{\rm bit}\hspace{0.05cm}.$$
 
:$$h(X) = h(Y) = {\rm log}_2 \hspace{0.1cm} (2) = 1 \,{\rm bit}\hspace{0.05cm}.$$
 
* Setzt man diese Ergebnisse in die obige Gleichung ein, so erhält man:
 
* Setzt man diese Ergebnisse in die obige Gleichung ein, so erhält man:
 
:$$I(X;Y) = h(X) + h(Y) - h(XY) = 1 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit} = 0 \,{\rm (bit)}
 
:$$I(X;Y) = h(X) + h(Y) - h(XY) = 1 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit} = 0 \,{\rm (bit)}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 +
  
  
 
[[File:P_ID2888__Inf_A_4_5b_neu.png|right|frame|„Blaue” Wahrscheinlichkeitsdichtefunktionen]]
 
[[File:P_ID2888__Inf_A_4_5b_neu.png|right|frame|„Blaue” Wahrscheinlichkeitsdichtefunktionen]]
'''(2)'''&nbsp; Auch bei diesem Parallelogramm ergibt sich $F = 4, \ C = 1/4$ sowie $h(XY) = 2$ bit.  
+
'''(2)'''&nbsp; Auch bei diesem Parallelogramm ergibt sich&nbsp; $F = 4, \ C = 1/4$&nbsp; sowi&nbsp;e $h(XY) = 2$ bit.  
*Die Zufallsgröße $Y$ ist hier wie in der Teilaufgabe '''(1)''' zwischen $0$ und $2$ gleichverteilt. Somit gilt weiter $h(Y) = 1$ bit.
+
*Die Zufallsgröße&nbsp; $Y$&nbsp; ist hier wie in der Teilaufgabe&nbsp; '''(1)'''&nbsp; zwischen&nbsp; $0$&nbsp; und&nbsp; $2$&nbsp; gleichverteilt&nbsp; &rArr; &nbsp; $h(Y) = 1$ bit.
  
*Dagegen ist $Y$ dreieckverteilt zwischen $0$ und $4$ (mit Maximum bei $2$). Es ergibt sich hierfür die gleiche differentielle Entropie $h(Y)$ wie bei einer symmetrischen Dreieckverteilung im Bereich zwischen $&plusmn;2$  (siehe Angabenblatt):
+
*Dagegen ist&nbsp; $X$&nbsp; dreieckverteilt zwischen&nbsp; $0$&nbsp; und&nbsp; $4$&nbsp; $($mit Maximum bei $2)$.&nbsp;
 +
*Es ergibt sich hierfür die gleiche differentielle Entropie&nbsp; $h(Y)$&nbsp; wie bei einer symmetrischen Dreieckverteilung im Bereich zwischen&nbsp; $&plusmn;2$&nbsp; (siehe Angabenblatt):
 
:$$h(X) = {\rm log}_2 \hspace{0.1cm} \big[\hspace{0.05cm}2 \cdot \sqrt{ e} \hspace{0.05cm}\big ]
 
:$$h(X) = {\rm log}_2 \hspace{0.1cm} \big[\hspace{0.05cm}2 \cdot \sqrt{ e} \hspace{0.05cm}\big ]
 
= 1.721 \,{\rm bit}$$
 
= 1.721 \,{\rm bit}$$
Line 118: Line 121:
 
\Rightarrow \hspace{0.3cm} h(XY)  =  {\rm log}_2 \hspace{0.1cm} (A \cdot B)  
 
\Rightarrow \hspace{0.3cm} h(XY)  =  {\rm log}_2 \hspace{0.1cm} (A \cdot B)  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Die Zufallsgröße $Y$ ist nun zwischen $0$ und $A$ gleichverteilt und die Zufallsgröße $Y$ ist  zwischen $0$ und $B$ dreieckverteilt:
+
*Die Zufallsgröße&nbsp; $Y$&nbsp; ist nun zwischen&nbsp; $0$&nbsp; und&nbsp; $A$&nbsp; gleichverteilt und die Zufallsgröße&nbsp; $X$&nbsp; ist  zwischen&nbsp; $0$&nbsp; und&nbsp; $B$&nbsp; dreieckverteilt:
 
:$$h(X)  \ =  \  {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ e})  
 
:$$h(X)  \ =  \  {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ e})  
 
\hspace{0.05cm},$$ $$
 
\hspace{0.05cm},$$ $$
 
  h(Y)  \  =  \  {\rm log}_2 \hspace{0.1cm} (A)\hspace{0.05cm}.$$
 
  h(Y)  \  =  \  {\rm log}_2 \hspace{0.1cm} (A)\hspace{0.05cm}.$$
Damit ergibt sich für die Transinformation zwischen $X$ und $Y$:
+
*Damit ergibt sich für die Transinformation zwischen&nbsp; $X$&nbsp; und&nbsp; $Y$:
 
:$$I(X;Y)  \  =      {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ {\rm e}}) + {\rm log}_2 \hspace{0.1cm} (A) - {\rm log}_2 \hspace{0.1cm} (A \cdot B)$$  
 
:$$I(X;Y)  \  =      {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ {\rm e}}) + {\rm log}_2 \hspace{0.1cm} (A) - {\rm log}_2 \hspace{0.1cm} (A \cdot B)$$  
 
:$$\Rightarrow \hspace{0.3cm} I(X;Y)  =  \ {\rm log}_2 \hspace{0.1cm} \frac{B \cdot \sqrt{ {\rm e}} \cdot A}{A \cdot B} = {\rm log}_2 \hspace{0.1cm} (\sqrt{ {\rm e}})\hspace{0.15cm}\underline{= 0.721\,{\rm bit}}
 
:$$\Rightarrow \hspace{0.3cm} I(X;Y)  =  \ {\rm log}_2 \hspace{0.1cm} \frac{B \cdot \sqrt{ {\rm e}} \cdot A}{A \cdot B} = {\rm log}_2 \hspace{0.1cm} (\sqrt{ {\rm e}})\hspace{0.15cm}\underline{= 0.721\,{\rm bit}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
[[File: P_ID2890__Inf_A_4_5d.png |right|frame|Weitere Beispiele für $f_{XY}(x, y)$]]
+
[[File: P_ID2890__Inf_A_4_5d.png |right|frame|Weitere Beispiele für&nbsp; $f_{XY}(x, y)$]]
$I(X;Y)$ somit unabhängig von den WDF&ndash;Parametern $A$ und $B$.
+
*$I(X;Y)$&nbsp; somit unabhängig von den WDF&ndash;Parametern&nbsp; $A$&nbsp; und&nbsp; $B$.
  
  
  
'''(4)'''&nbsp; <u>Alle genannten Voraussetzungen</u> sind erforderlich. Allerdings sind nicht für jedes Parallelogramm die Forderungen 2 und 3 zu erfüllen. Nebenstehende Grafik zeigt zwei solche Konstellationen, wobei nun die Zufallsgröße $X$ jeweils gleichverteilt ist zwischen $0$ und $1$.
+
'''(4)'''&nbsp; <u>Alle genannten Voraussetzungen</u> sind erforderlich.&nbsp;
* Bei der oberen Grafik liegen die beiden eingezeichneten Punkte auf einer Höhe &nbsp; &#8658; &nbsp; $f_{Y}(y)$ ist dreieckverteilt &nbsp; &#8658; &nbsp; $I(X;Y) = 0.721$ bit.
+
*Allerdings sind nicht für jedes Parallelogramm die Forderungen&nbsp; '''(2)'''&nbsp; und&nbsp; '''(3)'''&nbsp; zu erfüllen.&nbsp; Die nebenstehende Grafik zeigt zwei solche Konstellationen, wobei die Zufallsgröße&nbsp; $X$&nbsp; jeweils gleichverteilt zwischen&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; ist.
*Die untere Verbund&ndash;WDF besitzt eine andere Transinformation, da die beiden Punkte nicht auf gleicher Höhe liegen &nbsp; &#8658; &nbsp; die WDF $f_{Y}(y)$ hat hier eine Trapezform.  
+
* Bei der oberen Grafik liegen die eingezeichneten Punkte auf einer Höhe &nbsp; &#8658; &nbsp; $f_{Y}(y)$&nbsp; ist dreieckverteilt &nbsp; &#8658; &nbsp; $I(X;Y) = 0.721$ bit.
*Gefühlsmäßig tippe ich auf $I(X;Y) < 0.721$ bit, da sich das 2D&ndash;Gebiet eher einem Rechteck annähert. Wenn Sie noch Lust haben, so überprüfen Sie das bitte.   
+
*Die untere Verbund&ndash;WDF besitzt eine andere Transinformation, da die beiden Punkte nicht auf gleicher Höhe liegen &nbsp; <br>&#8658; &nbsp; die WDF&nbsp; $f_{Y}(y)$&nbsp; hat hier eine Trapezform.  
 +
*Gefühlsmäßig tippe ich auf&nbsp; $I(X;Y) < 0.721$&nbsp; bit, da sich das 2D&ndash;Gebiet eher einem Rechteck annähert.&nbsp; Wenn Sie noch Lust haben, so überprüfen Sie das bitte.   
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 16:37, 12 February 2020

Vorgegebene Verbund-WDF

Vorgegeben sind hier die drei unterschiedlichen 2D–Gebiete  $f_{XY}(x, y)$, die in der Aufgabe nach ihren Füllfarben mit

  • rote Verbund-WDF,
  • blaue Verbund-WDF,  und
  • grüne Verbund-WDF


bezeichnet werden.  Innerhalb der dargestellten Gebieten gelte jeweils  $f_{XY}(x, y) = C = \rm const.$

Die Transinformation zwischen den wertkontinuierlichen Zufallsgrößen  $X$  und  $Y$  kann man zum Beispiel wie folgt berechnen:

$$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$

Für die hier verwendeten differentiellen Entropien gelten die folgenden Gleichungen:

$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_X)} \hspace{-0.55cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \big[f_X(x)\big] \hspace{0.1cm}{\rm d}x \hspace{0.05cm},$$
$$h(Y) = -\hspace{-0.7cm} \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_Y)} \hspace{-0.55cm} f_Y(y) \cdot {\rm log} \hspace{0.1cm} \big[f_Y(y)\big] \hspace{0.1cm}{\rm d}y \hspace{0.05cm},$$
$$h(XY) = \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} \big[ f_{XY}(x, y) \big] \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
  • Für die beiden Randwahrscheinlichkeitsdichtefunktionen gilt dabei:
$$f_X(x) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{Y}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) \hspace{0.15cm}{\rm d}y\hspace{0.05cm},$$
$$f_Y(y) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{X}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) \hspace{0.15cm}{\rm d}x\hspace{0.05cm}.$$





Hinweise:

  • Gegeben seien zudem folgende differentielle Entropien:
  • Ist  $X$  dreieckverteilt zwischen  $x_{\rm min}$  und  $x_{\rm max}$, so gilt:
$$h(X) = {\rm log} \hspace{0.1cm} [\hspace{0.05cm}\sqrt{ e} \cdot (x_{\rm max} - x_{\rm min})/2\hspace{0.05cm}]\hspace{0.05cm}.$$
  • Ist  $Y$  gleichverteilt zwischen  $y_{\rm min}$  und  $y_{\rm max}$, so gilt:
$$h(Y) = {\rm log} \hspace{0.1cm} \big [\hspace{0.05cm}y_{\rm max} - y_{\rm min}\hspace{0.05cm}\big ]\hspace{0.05cm}.$$
  • Alle Ergebnisse sollen in „bit” angegeben werden.  Dies erreicht man mit   $\log$  ⇒  $\log_2$.



Fragebogen

1

Wie groß ist die Transinformation  der roten Verbund-WDF?

$I(X; Y) \ = \ $

$\ \rm bit$

2

Wie groß ist die Transinformation  der blauen Verbund-WDF?

$I(X; Y) \ = \ $

$\ \rm bit$

3

Wie groß ist die Transinformation  der grünen Verbund-WDF?

$I(X; Y) \ = \ $

$\ \rm bit$

4

Welche Voraussetzungen müssen die Zufallsgrößen  $X$  und  $Y$  gleichzeitig erfüllen, damit allgemein  $I(X;Y) = 1/2 \cdot \log (\rm e)$  gilt:

Die Verbund-WDF  $f_{XY}(x, y)$  ergibt ein Parallelogramm.
Eine der Zufallsgrößen  $(X$  oder  $Y)$  ist gleichverteilt.
Die andere Zufallsgröße  $(Y$  oder  $X)$  ist dreieckverteilt.


Musterlösung

„Rote” Wahrscheinlichkeitsdichtefunktionen

(1)  Bei der rechteckförmigen Verbund–WDF  $f_{XY}(x, y)$  gibt es zwischen  $X$  und  $Y$  keine statistischen Bindungen   ⇒   $\underline{I(X;Y) = 0}$.

Formal lässt sich dieses Ergebnis mit der folgenden Gleichung nachweisen:

$$I(X;Y) = h(X) \hspace{-0.05cm}+\hspace{-0.05cm} h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(XY)\hspace{0.02cm}.$$
  • Die rote Fläche 2D–WDF  $f_{XY}(x, y)$  ist  $F = 4$.  Da  $f_{XY}(x, y)$  in diesem Gebiet konstant ist und das Volumen unter  $f_{XY}(x, y)$  gleich  $1$  sein muss, gilt für die Höhe  $C = 1/F = 1/4$.
  • Daraus folgt für die differentielle Verbundentropie in „bit”:
$$h(XY) \ = \ \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} [ f_{XY}(x, y) ] \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y$$
$$\Rightarrow \hspace{0.3cm} h(XY) \ = \ \ {\rm log}_2 \hspace{0.1cm} (4) \cdot \hspace{0.02cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y = 2 \,{\rm bit}\hspace{0.05cm}.$$
  • Es ist berücksichtigt, das das Doppelintegral gleich  $1$  ist.  Die Pseudo–Einheit „bit” korrespondiert mit dem Logarithmus dualis  ⇒  „log2”.


Weiterhin gilt:

  • Die Randwahrscheinlichkeitsdichtefunktionen  $f_{X}(x)$  und  $f_{Y}(y)$  sind rechteckförmig   ⇒   Gleichverteilung zwischen  $0$  und  $2$:
$$h(X) = h(Y) = {\rm log}_2 \hspace{0.1cm} (2) = 1 \,{\rm bit}\hspace{0.05cm}.$$
  • Setzt man diese Ergebnisse in die obige Gleichung ein, so erhält man:
$$I(X;Y) = h(X) + h(Y) - h(XY) = 1 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit} = 0 \,{\rm (bit)} \hspace{0.05cm}.$$


„Blaue” Wahrscheinlichkeitsdichtefunktionen

(2)  Auch bei diesem Parallelogramm ergibt sich  $F = 4, \ C = 1/4$  sowi e $h(XY) = 2$ bit.

  • Die Zufallsgröße  $Y$  ist hier wie in der Teilaufgabe  (1)  zwischen  $0$  und  $2$  gleichverteilt  ⇒   $h(Y) = 1$ bit.
  • Dagegen ist  $X$  dreieckverteilt zwischen  $0$  und  $4$  $($mit Maximum bei $2)$. 
  • Es ergibt sich hierfür die gleiche differentielle Entropie  $h(Y)$  wie bei einer symmetrischen Dreieckverteilung im Bereich zwischen  $±2$  (siehe Angabenblatt):
$$h(X) = {\rm log}_2 \hspace{0.1cm} \big[\hspace{0.05cm}2 \cdot \sqrt{ e} \hspace{0.05cm}\big ] = 1.721 \,{\rm bit}$$
$$\Rightarrow \hspace{0.3cm} I(X;Y) = 1.721 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit}\hspace{0.05cm}\underline{ = 0.721 \,{\rm (bit)}} \hspace{0.05cm}.$$


„Grüne” Wahrscheinlichkeitsdichtefunktionen

(3)  Bei den grünen Gegebenheiten ergeben sich folgende Eigenschaften:

$$F = A \cdot B \hspace{0.3cm} \Rightarrow \hspace{0.3cm} C = \frac{1}{A \cdot B} \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} h(XY) = {\rm log}_2 \hspace{0.1cm} (A \cdot B) \hspace{0.05cm}.$$
  • Die Zufallsgröße  $Y$  ist nun zwischen  $0$  und  $A$  gleichverteilt und die Zufallsgröße  $X$  ist zwischen  $0$  und  $B$  dreieckverteilt:
$$h(X) \ = \ {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ e}) \hspace{0.05cm},$$ $$ h(Y) \ = \ {\rm log}_2 \hspace{0.1cm} (A)\hspace{0.05cm}.$$
  • Damit ergibt sich für die Transinformation zwischen  $X$  und  $Y$:
$$I(X;Y) \ = {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ {\rm e}}) + {\rm log}_2 \hspace{0.1cm} (A) - {\rm log}_2 \hspace{0.1cm} (A \cdot B)$$
$$\Rightarrow \hspace{0.3cm} I(X;Y) = \ {\rm log}_2 \hspace{0.1cm} \frac{B \cdot \sqrt{ {\rm e}} \cdot A}{A \cdot B} = {\rm log}_2 \hspace{0.1cm} (\sqrt{ {\rm e}})\hspace{0.15cm}\underline{= 0.721\,{\rm bit}} \hspace{0.05cm}.$$
Weitere Beispiele für  $f_{XY}(x, y)$
  • $I(X;Y)$  somit unabhängig von den WDF–Parametern  $A$  und  $B$.


(4)  Alle genannten Voraussetzungen sind erforderlich. 

  • Allerdings sind nicht für jedes Parallelogramm die Forderungen  (2)  und  (3)  zu erfüllen.  Die nebenstehende Grafik zeigt zwei solche Konstellationen, wobei die Zufallsgröße  $X$  jeweils gleichverteilt zwischen  $0$  und  $1$  ist.
  • Bei der oberen Grafik liegen die eingezeichneten Punkte auf einer Höhe   ⇒   $f_{Y}(y)$  ist dreieckverteilt   ⇒   $I(X;Y) = 0.721$ bit.
  • Die untere Verbund–WDF besitzt eine andere Transinformation, da die beiden Punkte nicht auf gleicher Höhe liegen  
    ⇒   die WDF  $f_{Y}(y)$  hat hier eine Trapezform.
  • Gefühlsmäßig tippe ich auf  $I(X;Y) < 0.721$  bit, da sich das 2D–Gebiet eher einem Rechteck annähert.  Wenn Sie noch Lust haben, so überprüfen Sie das bitte.