Difference between revisions of "Aufgaben:Exercise 2.3: Yet Another Multi-Path Channel"

From LNTwww
Line 109: Line 109:
 
\frac {3}{16} \cdot \left [  {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [  {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$
 
\frac {3}{16} \cdot \left [  {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [  {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$
  
Using the [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Euler's theorem]], with consideration of the frequency periodicity, this results in
+
Using [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Euler's theorem]], with consideration of the frequency periodicity, this results in
 
:$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) +
 
:$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) +
 
\frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$
 
\frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$
Line 118: Line 118:
  
  
'''(6)'''  The frequency response just calculated for the frequency $f = 250 \ \rm kHz$ can be displayed as follows:
+
'''(6)'''  At $f = 250 \ \rm kHz$, the frequency response is
 
[[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]]
 
[[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]]
 
$$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3
 
$$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
If you now dial    
+
If you now substitute    
 
:$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$  
 
:$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$  
 
the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency.
 
the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency.
Line 129: Line 129:
  
 
The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$:  
 
The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$:  
*The blue curve applies to $k_3 = 0.25$ according to the specifications of subtask '''(4)''.
+
*The blue curve corresponds to $k_3 = 0.25$ according to the specifications of subtask '''(4)''.
*The red curve is valid for $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$.
+
*The red curve corresponds to $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 15:19, 15 April 2020

Vorgegebene Rechteckantwort

We consider a multipath channel, which is characterized by the following impulse response: $$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m) \hspace{0.05cm}.$$

All coefficients  $k_{m}$  are real (positive or negative). Furthermore, we note

  • From the specification  $h(\tau, \hspace{0.05cm}t) = h(\tau)$  you can see that the channel is time invariant.
  • Generally, the channel has $M$ paths. The  value of $M$ should be determined from the graph.
  • The following relations apply to the delay times:  $\tau_1 < \tau_2 < \tau_3 < \ \ text{...}$


The graph shows the output signal  $r(\tau)$  of the channel when the following transmit signal is present at the input (shown in the equivalent low-pass range):

$$s(\tau) = \left\{ \begin{array}{c} s_0\\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le \tau < 5\,{\rm µ s}, \\ {\rm otherwise}. \\ \end{array}$$

We want to find the corresponding impulse response  $h(\tau)$  as well as the transfer function  $H(f)$.


Notes:

  • This task refers to the chapter  Mehrwegeempfang beim Mobilfunk.
  • For the solution of subtask (1) assume that the impulse response  $h(\tau)$  has a span of 5 microseconds.



Questionnaire

1

What is the impulse response  $h(\tau)$? How many paths  $(M)$  are there?

$M \ = \ $

2

Specify the first three delays  $\tau_m$ .

$\tau_1 \ = \ $

$\ \ \rm µ s$
$\tau_2 \ = \ $

$\ \ \rm µ s$
$\tau_3 \ = \ $

$\ \ \rm µ s$

3

What are the weights of the first three Dirac impulses?

$k_1 \ = \ $

$k_2 \ = \ $

$k_3 \ = \ $

4

Calculate the frequency response  $H(f)$. What is the frequency period  $f_0$?
Note:   With integer  $i$, it must hold that   $H(f + i \cdot f_0) = H(f)$ .

$f_0 \ = \ $

$\ \ \rm kHz$

5

Calculate the magnitude of the frequency response. Which values result for the frequencies  $f = 0$,  $f = 250 \ \rm kHz$  and  $f = 500 \ \rm kHz$?

$|H(f = 0)| \ = \ $

$|H(f = 250 \ \rm kHz)| \ = \ $

$|H(f = 500 \ \rm kHz)| \ = \ $

6

What is the worst value  $({\rm worst \ case})$  for  $k_3$  at frequency  $f = 250 \ \rm kHz$?

$k_3 \ = \ $


Sample solution

(1)  Here we have $r(\tau) = s(\tau) ∗ h(\tau)$, where $s(\tau)$ denotes a rectangular pulse of duration $T = 5 \ \ \rm µ s$ and the impulse response $h(\tau)$ is made up of $M$ weighted Dirac functions at $\tau_1, \tau_2, \ \text{...} \ , \tau_M$

The sketched output signal $r(\tau)$ can only result if

  • $\tau_1 = 0$ (otherwise $r(\tau)$ would not start at $\tau = 0$),
  • $\tau_M = 10 \ \rm µ s$ is (this results in the rectangular section between $10 \ \rm µ s$ and $15 \ \ \rm µ s$),
  • there is another Dirac function at $\tau_2 = 2 \ \rm µ s$ between the two.


That means:   The impulse response here consists of $\underline {M = 3}$ Dirac functions.


(2)  As already calculated in the first subtask, one gets

$$\tau_1 \hspace{0.1cm} \underline {= 0}\hspace{0.05cm},\hspace{0.2cm}\tau_2 \hspace{0.1cm} \underline {= 2\,{\rm µ s}}\hspace{0.05cm},\hspace{0.2cm}\tau_3 \hspace{0.1cm} \underline {= 10\,{\rm µ s}}\hspace{0.05cm}.$$


(3)  If you compare input $s(\tau)$ and output $r(\tau)$, you will get the following results:

  • Interval $0 < \tau < 2 \ {\rm µ s} \text{:} \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$,
  • Interval $2 \ {\rm µ s} < \tau < 5 \ {\rm µ s} \text{:} \, \hspace{2.4cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, –0.50}$,
  • Interval $10 \ {\rm µ s} < \tau < 15 \ {\rm µ s} \text{:} \, \hspace{1.95cm} r(\tau) =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$.

(4)  Using the time-shifting property, the Fourier transform of the impulse response $h(\tau)$ is:

$$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3} \hspace{0.05cm}. $$

Analysis of the individual contributions leads to the following conclusion:

  • The first part is constant (any period is valid).
  • The second part is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$.
  • The third part is periodic with $f_3 = 1/\tau_3 = 100 \ \rm kHz$.


⇒ $H(f)$ is thus periodic with $f_0 \ \underline {= 500 \ \ \rm kHz}$.


(5)  With $A = 2\pi f \cdot \tau_2$ and $B = 2\pi f \cdot \tau_3$ you get

$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)= \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ] \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{{\rm j}B}\right ]$$
$$\Rightarrow \hspace{0.3cm} |H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {9}{16 }- \frac {3 {\rm e}^{{\rm j}A}}{8} +\frac {3{\rm e}^{{\rm j}B}}{16} - \frac {3{\rm e}^{-{\rm j}A}}{8} +\frac {1}{4}- \frac {{\rm e}^{{\rm j}(B-A)}}{8} +\frac {3{\rm e}^{-{\rm j}B}}{16} - \frac {{\rm e}^{{\rm j}(A-B)}}{8} +\frac{1}{16 }=$$
$$\hspace{2.1cm} \ = \ \hspace{-0.1cm}\frac {7}{8 }- \frac {3}{8} \cdot \left [ {\rm e}^{{\rm j}A} + {\rm e}^{-{\rm j}A}\right ]+ \frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$

Using Euler's theorem, with consideration of the frequency periodicity, this results in

$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) + \frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$
$$\Rightarrow \hspace{0.3cm} |H(f = 0)|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8 }- \frac {3}{4} + \frac {3}{8} - \frac {1}{4} } = \sqrt{0.25}\hspace{0.1cm} \underline {= 0.5} = |H(f = 500\,{\rm kHz})|$$
$$|H(f = 250\,{\rm kHz})|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( \pi ) + \frac {3}{8} \cdot \cos( 5 \pi )- \frac {1}{4} \cdot \cos( 4 \pi )} \hspace{0.1cm} \underline {= 1}\hspace{0.05cm}.$$


(6)  At $f = 250 \ \rm kHz$, the frequency response is

Amplitude frequency response for three-way channel

$$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3 \hspace{0.05cm}.$$

If you now substitute  

$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$

the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency.


The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$:

  • The blue curve corresponds to $k_3 = 0.25$ according to the specifications of subtask '(4).
  • The red curve corresponds to $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$.