Difference between revisions of "Aufgaben:Exercise 2.4: 2D Transfer Function"
m (Javier verschob die Seite Exercises:Exercise 2.4: 2-D Transfer Function nach Exercise 2.4: 2-D Transfer Function) |
|||
Line 3: | Line 3: | ||
[[File:P_ID2161__Mob_A_2_4.png|right|frame|2D–Impulsantwort $|h(\tau, \hspace{0.05cm}t)|$]] | [[File:P_ID2161__Mob_A_2_4.png|right|frame|2D–Impulsantwort $|h(\tau, \hspace{0.05cm}t)|$]] | ||
− | + | Shown is the two-dimensional impulse response $h(\tau, \hspace{0.05cm}t)$ of a mobile radio system in magnitude representation. | |
− | * | + | *It can be seen that the 2D–impulse response only has shares for the delay times $\tau = 0$ and $\tau = 1 \ \rm µ s$ . |
− | * | + | *At these times: |
− | + | $$h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}$$ | |
− | + | $$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.$ | |
− | + | For all others $\tau$–values is $h(\tau, \hspace{0.05cm}t) \equiv 0$. | |
− | + | The two-dimensional transfer function $H(f, \hspace{0.05cm} t)$ is sought as the Fourier transform of $h(\tau, t)$ with respect to the delay time $\tau$: | |
:$$H(f,\hspace{0.05cm} t) | :$$H(f,\hspace{0.05cm} t) | ||
− | \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\ | + | \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Line 21: | Line 21: | ||
− | '' | + | ''Notes:'' |
− | * | + | * This task belongs to chapter [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]]. |
− | * | + | * A similar problem is treated in [[Aufgaben:Exercise_2.5:_Scatter_Function| Task 2.5]] but with a different nomenclature. |
Line 29: | Line 29: | ||
− | === | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {How large is the period duration $T_0$ of the function $h(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)$? Note that the graphic shows the <u>amount</u> $|h(\dew, \hspace{0.05cm}t)|$ . |
|type="{}"} | |type="{}"} | ||
− | $T_0 \ = \ ${ 20 3% } $\ \rm ms$ | + | $T_0 \ = \ ${ 20 3% } $\ \ \rm ms$ |
− | { | + | {At what times $t_1$ $($between $0$ and $10 \ \rm ms)$ and $t_2$ $($between $10 \ \ \rm ms$ and $20 \ \ \rm ms)$ is $H(f, \hspace{0. 05cm}t)$ is $f$ constant? |
|type="{}"} | |type="{}"} | ||
− | $t_1 \ = \ ${ 5 3% } $\ \rm ms$ | + | $t_1 \ = \ ${ 5 3% } $\ \ \rm ms$ |
− | $t_2 \ = \ ${ 15 3% } $\ \rm ms$ | + | $t_2 \ = \ ${ 15 3% } $\ \ \rm ms$ |
− | { | + | {Calculate $H_0(f) = H(f, \hspace{0.05cm}t = 0)$. Which statements are true? |
|type="[]"} | |type="[]"} | ||
− | + | + | + It applies $H_0(f) = H_0(f + i \cdot 1 \ {\rm MHz}), \ i = ±1, ±2, \ \ \ text{...}$ |
− | + | + | + It applies approximately $0.293 ≤ |H_0(f)| ≤ 1.707$. |
− | + $|H_0(f)|$ | + | + $|H_0(f)|$ has at $f = 0$ a maximum. |
− | { | + | {Calculate $H_{10}(f) = H(f, \hspace{0.05cm}t = 10 \ \rm ms)$. Which statements are true? |
|type="[]"} | |type="[]"} | ||
− | + | + | + It applies $H_{10}(f) = H_{10}(f + i \cdot 1 \ {\rm MHz}),\ i = ±1, ±2, \ \ \ text{...}$ |
− | + | + | + It applies approximately $0.293 ≤ H_{10}(f) ≤ 1.707$. |
− | - $|H_{10}(f)|$ | + | - $|H_{10}(f)|$ has at $f = 0$ a maximum. |
</quiz> | </quiz> | ||
− | === | + | ===Sample solution=== |
− | {{ML-Kopf}} | + | {{{ML-Kopf}} |
− | '''(1)''' | + | '''(1)''' The period duration can be read from the given graph. If the amount representation is taken into account, the result is $T_0 \ \underline {= 20 \ \ \rm ms}$. |
− | '''(2)''' | + | '''(2)''' At the time $t_1 \ \underline {= 5 \ \ \rm ms}$ is $h(\tau = 1 \ {\rm µ s}, t_1) = 0$. Accordingly, the following applies |
− | + | $$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | |
H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | ||
− | + | The same applies to $t_2 \ \underline {= 15 \ \ \rm ms}$: | |
− | + | $$h(\dew = 1\,{\rm µ s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | |
H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | ||
− | '''(3)''' | + | '''(3)''' At time $t = 0$ the impulse response with $\tau_1 = 1 \ \ \rm µ s$: |
− | + | $$h(\dew,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)+ \delta(\dew - \dew_1)\hspace{0.05cm}.$$ | |
− | + | The Fourier transform leads to the result: | |
− | + | $$H_0(f) = H(f,\hspace{0.05cm}t = 0) \hspace{-0.1cm}. \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} + 1 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \dew_1}=\frac{1}{ \sqrt{2}} + \cos( 2 \pi f \dew_1)- {\rm j}\cdot \sin( 2 \pi f \dew_1)$$ | |
− | + | $$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | |
− | \sqrt { \left [ {1}/{ \sqrt{2}} + | + | \sqrt { \left [ {1}/{ \sqrt{2}} + \cos( 2 \pi f \tau_1) \right ]^2 + \left [\sin( 2 \pi f \tau_1)\right ]^2}= |
− | \sqrt { 0.5 + | + | \sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$ |
− | + | It follows: | |
− | * $H_0(f)$ | + | * $H_0(f)$ is periodic with $1/\thaw_1 = 1 \ \rm MHz$. |
− | * | + | * For the maximum value or minimum value applies: |
− | + | $${\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}. $$ | |
− | * | + | * At $f = 0$, $|H_0(f)|$ has a maximum. |
− | + | Therefore, <u>all three solution suggestions</u> are correct. | |
− | + | '''(4)''' For the time $t = 10 \ \rm ms$ the following equations apply: | |
− | '''(4)''' | + | $$h(\dew,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2} \cdot \delta(\dew)- \delta(\dew - \dew_1)\hspace{0.05cm},$$ |
− | + | $$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | |
− | + | \frac{1}{ \sqrt{2}} - \cos( 2 \pi f \tau_1)+ {\rm j}\cdot \sin( 2 \pi f \tau_1)\hspace{0.05cm},$$ | |
− | \frac{1}{ \sqrt{2}} - | ||
:$$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | :$$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | ||
− | \sqrt { 1.5 - | + | \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$ |
− | [[File:P_ID2163__Mob_A_2_4d.png|right|frame| | + | [[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D impulse response $|h(\dew, \hspace{0.05cm}t)|$ and 2D transfer function $|H(f, \hspace{0.05cm}t)|$]] |
− | + | Correct are the <u>solutions 1 and 2</u>: | |
− | * | + | *The frequency period does not change from $t = $0. |
− | * | + | *The maximum value is still $1,707$ and the minimum value $0,293$ does not change compared to the subtask '''(3)''. |
− | * | + | *For $f = 0$ there is now a minimum and no maximum. |
− | + | The graph on the right shows the amount $|H(f, t)|$ of the 2D–transfer function. | |
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | |||
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]] | [[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]] |
Revision as of 15:28, 15 April 2020
Shown is the two-dimensional impulse response $h(\tau, \hspace{0.05cm}t)$ of a mobile radio system in magnitude representation.
- It can be seen that the 2D–impulse response only has shares for the delay times $\tau = 0$ and $\tau = 1 \ \rm µ s$ .
- At these times:
$$h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}$$ $$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.$ For all others $\tau$–values is $h(\tau, \hspace{0.05cm}t) \equiv 0$. The two-dimensional transfer function $H(f, \hspace{0.05cm} t)$ is sought as the Fourier transform of $h(\tau, t)$ with respect to the delay time $\tau$: :$$H(f,\hspace{0.05cm} t)
\hspace{0.2cm} \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t) \hspace{0.05cm}.$$ ''Notes:'' * This task belongs to chapter [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]]. * A similar problem is treated in [[Aufgaben:Exercise_2.5:_Scatter_Function| Task 2.5]] but with a different nomenclature. ==='"`UNIQ--h-0--QINU`"'Questionnaire=== '"`UNIQ--quiz-00000002-QINU`"' ==='"`UNIQ--h-1--QINU`"'Sample solution=== {'"`UNIQ--html-00000003-QINU`"' '''(1)''' The period duration can be read from the given graph. If the amount representation is taken into account, the result is $T_0 \ \underline {= 20 \ \ \rm ms}$. '''(2)''' At the time $t_1 \ \underline {= 5 \ \ \rm ms}$ is $h(\tau = 1 \ {\rm µ s}, t_1) = 0$. Accordingly, the following applies $$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ The same applies to $t_2 \ \underline {= 15 \ \ \rm ms}$: $$h(\dew = 1\,{\rm µ s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ '''(3)''' At time $t = 0$ the impulse response with $\tau_1 = 1 \ \ \rm µ s$: $$h(\dew,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)+ \delta(\dew - \dew_1)\hspace{0.05cm}.$$ The Fourier transform leads to the result: $$H_0(f) = H(f,\hspace{0.05cm}t = 0) \hspace{-0.1cm}. \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} + 1 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \dew_1}=\frac{1}{ \sqrt{2}} + \cos( 2 \pi f \dew_1)- {\rm j}\cdot \sin( 2 \pi f \dew_1)$$ $$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { \left [ {1}/{ \sqrt{2}} + \cos( 2 \pi f \tau_1) \right ]^2 + \left [\sin( 2 \pi f \tau_1)\right ]^2}= \sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$ It follows: * $H_0(f)$ is periodic with $1/\thaw_1 = 1 \ \rm MHz$. * For the maximum value or minimum value applies: '"`UNIQ-MathJax37-QINU`"' * At $f = 0$, $|H_0(f)|$ has a maximum. Therefore, <u>all three solution suggestions</u> are correct. '''(4)''' For the time $t = 10 \ \rm ms$ the following equations apply: '"`UNIQ-MathJax38-QINU`"' '"`UNIQ-MathJax39-QINU`"' :$$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$
Correct are the solutions 1 and 2:
- The frequency period does not change from $t = $0.
- The maximum value is still $1,707$ and the minimum value $0,293$ does not change compared to the subtask '(3).
- For $f = 0$ there is now a minimum and no maximum.
The graph on the right shows the amount $|H(f, t)|$ of the 2D–transfer function.