Difference between revisions of "Aufgaben:Exercise 2.5Z: Multi-Path Scenario"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}} [[File:P_ID2169__Mob_Z_2_5.png|right|frame|Mobilfunk–Szenario mit drei Pfaden]…“)
 
Line 3: Line 3:
  
 
[[File:P_ID2169__Mob_Z_2_5.png|right|frame|Mobilfunk–Szenario mit drei Pfaden]]
 
[[File:P_ID2169__Mob_Z_2_5.png|right|frame|Mobilfunk–Szenario mit drei Pfaden]]
In  [[Aufgaben:2.5_Scatter-Funktion| Aufgabe 2.5]]  war die Verzögerungs–Doppler–Funktion vorgegeben. Daraus sollte man die anderen Systemfunktionen berechnen und interpretieren. Die Vorgabe für die Scatterfunktion  $s(\tau_0, f_{\rm D})$  lautete:
+
In  [[Tasks:2.5_Scatter-Function| Task 2.5]]  the delay–Doppler–function was predefined. From this, one should calculate and interpret the other system functions. The default for the scatter function  $s(\tau_0, f_{\rm D})$  was
:$$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\tau_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$
+
$$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\dew_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$
:$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz})  
+
:$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\dew_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\dew_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz})  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
''Hinweis:''   In unserem Lerntutorial wird  $s(\tau_0, \hspace{0.05cm} f_{\rm D})$  auch mit  $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$  bezeichnet.  
+
''Note:''   In our learning tutorial,  $s(\tau_0, \hspace{0.05cm} f_{\rm D})$  is also identified with  $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$ .  
  
Wir haben hier die Verzögerungsvariable  $\tau$  durch  $\tau_0$  ersetzt. Dabei beschreibt die neue Variable  $\tau_0$  die Differenz zwischen der Laufzeit eines Pfades und der Laufzeit  $\tau_1$  des Hauptpfades. Der Hauptpfad ist somit in obiger Gleichung durch  $\tau_0 = 0$  gekennzeichnet.
+
Here we have replaced the delay variable  $\tau$  with  $\tau_0$ . The new variable  $\tau_0$  describes the difference between the runtime of a path and the runtime  $\tau_1$  of the main path. The main path is thus identified in the above equation by  $\tau_0 = 0$ .
  
Nun wird versucht, ein Mobilfunkszenario zu finden, bei dem tatsächlich diese Scatterfunktion auftreten würde. Die Grundstruktur ist dabei oben als Draufsicht skizziert, und es gilt:
+
Now an attempt is made to find a mobile radio scenario in which this scatter function would actually occur. The basic structure is sketched above as a top view, and it applies:
* Gesendet wird eine einzige Frequenz  $f_{\rm S} = 2 \ \rm GHz$.
+
* A single frequency is transmitted  $f_{\rm S} = 2 \ \rm GHz$.
* Der mobile Empfänger  $\rm (E)$  ist hier durch einen gelben Punkt dargestellt. Nicht bekannt ist, ob das Fahrzeugt steht, sich auf den Sender  $\rm (S)$  zu bewegt oder sich von diesem entfernt.
+
* The mobile receiver  $\rm (E)$  is represented here by a yellow dot. It is not known whether the vehicle is stationary, moving towards the transmitter  $\rm (S)$  or moving away from it.
* Das Signal gelangt über einen Hauptpfad (rot) und zwei Nebenpfaden (blau und grün) zum Empfänger. Reflexionen an den Hindernissen führen jeweils zu Phasendrehungen um  $\pi$.
+
* The signal reaches the receiver via a main path (red) and two secondary paths (blue and green). Reflections from the obstacles cause phase shifts of  $\pi$.
* ${\rm S}_2$  und  ${\rm S}_3$  sind hier als fiktive Sender zu verstehen, aus deren Lage die Auftreffwinkel  $\alpha_2$  und  $\alpha_3$  der Nebenpfade ermittelt werden können.
+
* ${\rm S}_2$  and  ${\rm S}_3$  are to be understood here as fictitious transmitters from whose position the angles of incidence  $\alpha_2$  and  $\alpha_3$  of the secondary paths can be determined.
* Für die Dopplerfrequenz gilt mit der Signalfrequenz  $f_{\rm S}$, dem Winkel  $\alpha$, der Geschwindigkeit  $v$  und der Lichtgeschwindigkeit  $c = 3 \cdot 10^8 \ \rm m/s$:
+
* For the Doppler frequency applies with the signal frequency  $f_{\rm S}$, the angle  $\alpha$, the velocity  $v$  and the velocity of light  $c = 3 \cdot 10^8 \ \rm m/s$:
:$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha)
+
$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Die Dämpfungsfaktoren  $k_1$,  $k_2$  und  $k_3$  sind umgekehrt proportional zu den Pfadlängen  $d_1$,  $d_2$  und  $d_3$. Dies entspricht dem Pfadverlustexponenten  $\gamma = 2$.
+
* The damping factors  $k_1$,  $k_2$  and  $k_3$  are inversely proportional to the path lengths  $d_1$,  $d_2$  and  $d_3$. This corresponds to the path loss exponent  $\gamma = 2$.
*Das bedeutet:   Die Signalleistung nimmt quadratisch mit der Distanz  $d$  ab und dementsprechend die Signalamplitude linear mit  $d$.
+
*This means:   The signal power decreases quadratically with distance  $d$  and accordingly the signal amplitude decreases linearly with  $d$.
  
  
Line 30: Line 30:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum Kapitel  [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS–Kanalmodell]].
+
* This task belongs to chapter  [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS–Kanalmodell]].
*Bezug genommen wird insbesondere auf das  [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung#Gebr.C3.A4uchliches_Pfadverlustmodell| Pfadverlustmodell]]  und den  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#Dopplerfrequenz_und_deren_Verteilung| Dopplereffekt]].
+
*We focus especially on the   [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung#Gebr.C3.A4uchliches_Pfadverlustmodell| path-loss model]]  and the   [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#Dopplerfrequenz_und_deren_Verteilung| Doppler effect]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Betrachten Sie zunächst nur die Diracfunktion bei&nbsp; $\tau = 0$&nbsp; und&nbsp; $f_{\rm D} = 100 \ \rm Hz$. Welche Aussagen gelten für den Empfänger?
+
{At first, consider only the Dirac function at&nbsp; $\tau = 0$&nbsp; and&nbsp; $f_{\rm D} = 100 \ \rm Hz$. Which statements apply to the recipient?
 
|type="()"}
 
|type="()"}
- Der Empfänger steht.
+
- The receiver is standing.
+ Der Empfänger fährt direkt auf den Sender zu.
+
+ The receiver moves directly towards the transmitter.
- Der Empfänger entfernt sich in Gegenrichtung zum Sender.
+
- The receiver moves away in the opposite direction to the transmitter.
  
{Wie groß ist die Fahrzeuggeschwindigkeit?
+
{What is the vehicle speed?
 
|type="{}"}
 
|type="{}"}
$v \ = \ ${ 54 3% } $\ \rm km/h$
+
$v \ = \ ${ 54 3% } $\ \ \rm km/h$
  
{Welche Aussagen gelten für den Dirac bei&nbsp; $\tau_0 = 1 \ \rm &micro; s$&nbsp; und&nbsp; $f_{\rm D} = +50 \ \rm Hz$?
+
{Which statements apply to the Dirac at&nbsp; $\tau_0 = 1 \ \ \rm &micro; s$&nbsp; and&nbsp; $f_{\rm D} = +50 \ \ \rm Hz$?
 
|type="[]"}
 
|type="[]"}
+ Dieser Dirac stammt vom blauen Pfad.
+
+ This Dirac comes from the blue path.
- Dieser Dirac stammt vom grünen Pfad.
+
- This Dirac comes from the green path.
- Der Winkel&nbsp; beträgt&nbsp; $30^\circ$.
+
- The angle&nbsp; is&nbsp; $30^\circ$.
+ Der Winkel&nbsp; beträgt&nbsp; $60^\circ$.
+
+ The angle&nbsp; is&nbsp; $60^\circ$.
  
{Welche Aussagen gelten für den grünen Pfad?
+
{What statements apply to the green path?
 
|type="[]"}
 
|type="[]"}
+ Für diesen gilt&nbsp; $\tau_0 = 1 \ \rm &micro; s$&nbsp; und&nbsp; $f_{\rm D} = \, &ndash;50 \ \rm Hz$.
+
+ For this,&nbsp; $\tau_0 = 1 \ \ \rm &micro; s$&nbsp; and&nbsp; $f_{\rm D} = \, &ndash;50 \ \ \rm Hz$.
- Der Winkel&nbsp; $\alpha_3$&nbsp; (siehe Grafik) beträgt&nbsp; $60^\circ$.
+
- The angle&nbsp; $\alpha_3$&nbsp; (see graphic) is&nbsp; $60^\circ$.
+ Der Winkel&nbsp; $\alpha_3$&nbsp; beträgt&nbsp; $240^\circ$.
+
+ The angle&nbsp; $\alpha_3$&nbsp; is&nbsp; $240^\circ$.
  
{Welche Relationen bestehen zwischen den beiden Nebenpfaden?
+
{What are the relations between the two side paths?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $d_3 = d_2$.
+
+ It applies&nbsp; $d_3 = d_2$.
+ Es gilt&nbsp; $k_3 = k_2$.
+
+ It is&nbsp; $k_3 = k_2$.
+ Es gilt&nbsp; $\tau_3 = \tau_2$.
+
+ It is&nbsp; $\tau_3 = \tau_2$.
  
{Wie groß ist die Laufzeitdifferenz&nbsp; $\Delta d = d_2 - d_1$?
+
{What is the difference in time&nbsp; $\Delta d = d_2 - d_1$?
 
|type="{}"}
 
|type="{}"}
$\Delta d \ = \ ${ 300 3% } $\ \rm m$
+
$\ Delta d \ = \ ${ 300 3% } $\ \ \rm m$
  
{Welches Verhältnis besteht zwischen&nbsp; $d_2$&nbsp; und&nbsp; $d_1$?
+
{What is the relationship between&nbsp; $d_2$&nbsp; and&nbsp; $d_1$?
 
|type="{}"}
 
|type="{}"}
$d_2/d_1 \ = \ ${ 1.414 3% }
+
$d_2/d_1 \ = \ ${ 1,414 3% }
  
{Geben Sie die Distanzen&nbsp; $d_1$&nbsp; und&nbsp; $d_2$&nbsp; an.
+
{Indicate the distances&nbsp; $d_1$&nbsp; and&nbsp; $d_2$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$d_1 \ = \ ${ 724 3% } $\ \rm m$
+
$d_1 \ = \ ${724 3% } $\ \ \rm m$
$d_2 \ = \ ${ 1024 3% } $\ \rm m$
+
$d_2 \ = \ ${ 1024 3% } $\ \ \rm m$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Sample solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Dopplerfrequenz ist für $\tau_0$ positiv. Das heißt, dass sich der Empfänger auf den Sender zu bewegt &nbsp; &#8658; &nbsp; <u>Aussage 2</u>.
+
'''(1)'''&nbsp; The Doppler frequency is positive for $\tau_0$. This means that the receiver is moving towards the transmitter &nbsp; &#8658; &nbsp; <u>statement 2</u>.
  
  
'''(2)'''&nbsp; Die Gleichung für die Dopplerfrequenz lautet allgemein bzw. für den Winkel $\alpha = 0$.
+
'''(2)'''&nbsp; The equation for the Doppler frequency is general or for the angle $\alpha = 0$.
:$$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha)
+
$$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha)
  \hspace{0.05cm},\hspace{0.3cm}\alpha = 0 \hspace{0.05cm}{\rm :} \hspace{0.15cm}f_{\rm D}= \frac{v}{c} \cdot f_{\rm S}\hspace{0.05cm}.$$
+
  \hspace{0.05cm},\hspace{0.3cm}\alpha = 0 \hspace{0.05cm}{\rm :} \hspace{0.15cm}f_{\rm D}= \frac{v}{c} \cdot f_{\rm S}\hspace{0.05cm}.$
  
*Daraus erhält man für die Geschwindigkeit:
+
*This is what you get for speed:
:$$v = \frac{f_{\rm D}}{f_{\rm S}} \cdot c = \frac{10^2\,{\rm Hz}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s}
+
$$v = \frac{f_{\rm D}}}{f_{\rm S} \cdot c = \frac{10^2\,{\rm Hz}}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s}
   \hspace{0.1cm} \underline {= 54 \,{\rm km/h}}  
+
   \hspace{0.1cm} \underline {= 54 \,{\rm km/h}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 4</u>:
+
'''(3)'''&nbsp; Correct are the <u>solutions 1 and 4</u>:
*Die Dopplerfrequenz $f_{\rm D} = 50 \ \rm Hz$ rührt vom blauen Pfad her, da sich der Empfänger irgendwie auf den virtuellen Sender ${\rm S}_2$ (beim Reflexionspunkt) zubewegt, wenn auch nicht in direkter Richtung.  
+
*The Doppler frequency $f_{\rm D} = 50 \ \rm Hz$ comes from the blue path, because the receiver somehow moves towards the virtual transmitter ${\rm S}_2$ (at the reflection point), although not in a direct direction.  
*Der Winkel $\alpha_2$ zwischen der Bewegungsrichtung und der Verbindungslinie ${\rm S_2 &ndash; E}$ beträgt $60^\circ$:
+
*The angle $\alpha_2$ between the direction of movement and the connecting line ${\rm S_2 &ndash; E}$ is $60^\circ$:
:$$\cos(\alpha_2) = \frac{f_{\rm D}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2
+
$$\cos(\alpha_2) = \frac{f_{\rm D}}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2
 
   \hspace{0.1cm} \underline {= 60^{\circ} }  
 
   \hspace{0.1cm} \underline {= 60^{\circ} }  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Richtig sind die <u>Aussagen 1 und 3</u>:  
+
'''(4)'''&nbsp; Correct are the <u>statements 1 and 3</u>:  
*Aus $f_{\rm D} = \, &ndash;50 \ \rm Hz$ folgt $\alpha_3 = \alpha_2 &plusmn; \pi$, also $\alpha_3 \ \underline {= 240^\circ}$.
+
*From $f_{\rm D} = \, &ndash;50 \ \rm Hz$ follows $\alpha_3 = \alpha_2 &plusmn; \pi$, so $\alpha_3 \ \underline {= 240^\circ}$.
  
  
  
'''(5)'''&nbsp; <u>Alle Aussagen stimmen</u>:  
+
'''(5)'''&nbsp; <u>All statements are correct</u>:  
*Die beiden Diracfunktionen bei $&plusmn; 50 \ \rm Hz$ haben die gleiche Laufzeit. Für beide Laufzeiten gilt $\tau_3 = \tau_2 = \tau_1 + \tau_0$.  
+
*The two Dirac functions at $&plusmn; 50 \ \ \rm Hz$ have the same running time. For both durations $\tau_3 = \tau_2 = \tau_1 + \tau_0$ is valid.  
*Aus der gleichen Laufzeit folgt aber auch&nbsp; $d_3 = d_2$&nbsp; und bei gleicher Länge auch die gleichen Dämpfungsfaktoren.
+
*From the same transit time, however, also follows&nbsp; $d_3 = d_2$&nbsp; and with the same length also the same damping factors.
  
  
  
'''(6)'''&nbsp; Die Laufzeitdifferenz ist $\tau_0 = 1 \ \rm &micro; s$, wie aus der Gleichung für $s(\tau_0, f_{\rm D})$ hervorgeht.
+
'''(6)'''&nbsp; The runtime difference is $\tau_0 = 1 \ \rm &micro; s$, as shown in the equation for $s(\tau_0, f_{\rm D})$.
* Damit ergibt sich die Längendifferenz:  
+
* This gives the difference in length:  
:$$\Delta d = \tau_0 \cdot c = 10^{&ndash;6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \underline {= 300 \ \rm m}.$$
+
$$\Delta d = \dew_0 \cdot c = 10^{&ndash;6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \ \underline {= 300 \ \ \rm m}.$$
  
  
  
'''(7)'''&nbsp; Der Pfadverlustexponent wurde für diese Aufgabe zu $\gamma = 2$ vorausgesetzt.  
+
'''(7)'''&nbsp; The path loss exponent was assumed to be $\gamma = 2$ for this task.  
*Dann gilt $k_1 = K/d_1$ und $k_2 = K/d_2$.  
+
*Then $k_1 = K/d_1$ and $k_2 = K/d_2$.  
  
*Das Minuszeichen berücksichtigt hierbei die $180^\circ$&ndash;Phasendrehung auf den Nebenpfaden.  
+
*The minus sign takes into account the $180^\circ$&ndash;phase rotation on the secondary paths.  
*Aus den Gewichten der Diracfunktionen kann man $k_1 = \sqrt{0.5}$ und $k_2 = -0.5$ ablesen. Daraus folgt:
+
*From the weights of the Dirac functions one can read $k_1 = \sqrt{0.5}$ and $k_2 = -0.5$. From this follows:
:$$\frac{d_2}{d_1} = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2}
+
$$\frac{\2}{d_1} = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2}
   \hspace{0.15cm} \underline {= 1.414}  
+
   \hspace{0.15cm} \underline {= 1,414}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Die Konstante $K$ ist lediglich eine Hilfsgröße, die nicht weiter betrachtet werden muss.
+
*The constant $K$ is only an auxiliary variable that does not need to be considered further.
  
  
  
'''(8)'''&nbsp; Aus&nbsp; $d_2/d_1 = 2^{-0.5}$&nbsp; und&nbsp; $\Delta d = d_2 \, - d_1 = 300 \ \rm m$&nbsp; folgt schließlich:
+
'''(8)'''&nbsp; Aus&nbsp; $d_2/d_1 = 2^{-0.5}$&nbsp; and&nbsp; $\Delta d = d_2 \, - d_1 = 300 \ \rm m$&nbsp; finally follows:
 
:$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
:$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
   d_1 = \frac{300\,{\rm m}}{\sqrt{2} - 1}  \hspace{0.15cm} \underline {= 724\,{\rm m}}  
+
   d_1 = \frac{300\,{\rm m}}}{\sqrt{2} - 1}  \hspace{0.15cm} \underline {= 724\,{\rm m}}  
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}}
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}}
 
   \hspace{0.05cm}. $$
 
   \hspace{0.05cm}. $$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
 
  
  
 
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
 
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]

Revision as of 12:12, 22 April 2020

Mobilfunk–Szenario mit drei Pfaden

In  Task 2.5  the delay–Doppler–function was predefined. From this, one should calculate and interpret the other system functions. The default for the scatter function  $s(\tau_0, f_{\rm D})$  was $$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\dew_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$

$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\dew_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\dew_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz}) \hspace{0.05cm}.$$


Note:   In our learning tutorial,  $s(\tau_0, \hspace{0.05cm} f_{\rm D})$  is also identified with  $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$ .

Here we have replaced the delay variable  $\tau$  with  $\tau_0$ . The new variable  $\tau_0$  describes the difference between the runtime of a path and the runtime  $\tau_1$  of the main path. The main path is thus identified in the above equation by  $\tau_0 = 0$ .

Now an attempt is made to find a mobile radio scenario in which this scatter function would actually occur. The basic structure is sketched above as a top view, and it applies:

  • A single frequency is transmitted  $f_{\rm S} = 2 \ \rm GHz$.
  • The mobile receiver  $\rm (E)$  is represented here by a yellow dot. It is not known whether the vehicle is stationary, moving towards the transmitter  $\rm (S)$  or moving away from it.
  • The signal reaches the receiver via a main path (red) and two secondary paths (blue and green). Reflections from the obstacles cause phase shifts of  $\pi$.
  • ${\rm S}_2$  and  ${\rm S}_3$  are to be understood here as fictitious transmitters from whose position the angles of incidence  $\alpha_2$  and  $\alpha_3$  of the secondary paths can be determined.
  • For the Doppler frequency applies with the signal frequency  $f_{\rm S}$, the angle  $\alpha$, the velocity  $v$  and the velocity of light  $c = 3 \cdot 10^8 \ \rm m/s$:

$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha) \hspace{0.05cm}.$$

  • The damping factors  $k_1$,  $k_2$  and  $k_3$  are inversely proportional to the path lengths  $d_1$,  $d_2$  and  $d_3$. This corresponds to the path loss exponent  $\gamma = 2$.
  • This means:   The signal power decreases quadratically with distance  $d$  and accordingly the signal amplitude decreases linearly with  $d$.




Notes:



Questionnaire

1

At first, consider only the Dirac function at  $\tau = 0$  and  $f_{\rm D} = 100 \ \rm Hz$. Which statements apply to the recipient?

The receiver is standing.
The receiver moves directly towards the transmitter.
The receiver moves away in the opposite direction to the transmitter.

2

What is the vehicle speed?

$v \ = \ $

$\ \ \rm km/h$

3

Which statements apply to the Dirac at  $\tau_0 = 1 \ \ \rm µ s$  and  $f_{\rm D} = +50 \ \ \rm Hz$?

This Dirac comes from the blue path.
This Dirac comes from the green path.
The angle  is  $30^\circ$.
The angle  is  $60^\circ$.

4

What statements apply to the green path?

For this,  $\tau_0 = 1 \ \ \rm µ s$  and  $f_{\rm D} = \, –50 \ \ \rm Hz$.
The angle  $\alpha_3$  (see graphic) is  $60^\circ$.
The angle  $\alpha_3$  is  $240^\circ$.

5

What are the relations between the two side paths?

It applies  $d_3 = d_2$.
It is  $k_3 = k_2$.
It is  $\tau_3 = \tau_2$.

6

What is the difference in time  $\Delta d = d_2 - d_1$?

$\ Delta d \ = \ $

$\ \ \rm m$

7

What is the relationship between  $d_2$  and  $d_1$?

$d_2/d_1 \ = \ $

8

Indicate the distances  $d_1$  and  $d_2$ .

$d_1 \ = \ ${724 3% } $\ \ \rm m$
$d_2 \ = \ $

$\ \ \rm m$


Sample solution

(1)  The Doppler frequency is positive for $\tau_0$. This means that the receiver is moving towards the transmitter   ⇒   statement 2.


(2)  The equation for the Doppler frequency is general or for the angle $\alpha = 0$. $$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha) \hspace{0.05cm},\hspace{0.3cm}\alpha = 0 \hspace{0.05cm}{\rm :} \hspace{0.15cm}f_{\rm D}= \frac{v}{c} \cdot f_{\rm S}\hspace{0.05cm}.$ *This is what you get for speed: $$v = \frac{f_{\rm D}}}{f_{\rm S} \cdot c = \frac{10^2\,{\rm Hz}}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s}

 \hspace{0.1cm} \underline {= 54 \,{\rm km/h} 
 \hspace{0.05cm}.$$


'''(3)'''  Correct are the <u>solutions 1 and 4</u>:
*The Doppler frequency $f_{\rm D} = 50 \ \rm Hz$ comes from the blue path, because the receiver somehow moves towards the virtual transmitter ${\rm S}_2$ (at the reflection point), although not in a direct direction. 
*The angle $\alpha_2$ between the direction of movement and the connecting line ${\rm S_2 – E}$ is $60^\circ$:
$$\cos(\alpha_2) = \frac{f_{\rm D}}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2
 \hspace{0.1cm} \underline {= 60^{\circ} } 
 \hspace{0.05cm}.$$


'''(4)'''  Correct are the <u>statements 1 and 3</u>: 
*From $f_{\rm D} = \, –50 \ \rm Hz$ follows $\alpha_3 = \alpha_2 ± \pi$, so $\alpha_3 \ \underline {= 240^\circ}$.



'''(5)'''  <u>All statements are correct</u>: 
*The two Dirac functions at $± 50 \ \ \rm Hz$ have the same running time. For both durations $\tau_3 = \tau_2 = \tau_1 + \tau_0$ is valid. 
*From the same transit time, however, also follows  $d_3 = d_2$  and with the same length also the same damping factors.



'''(6)'''  The runtime difference is $\tau_0 = 1 \ \rm µ s$, as shown in the equation for $s(\tau_0, f_{\rm D})$.
* This gives the difference in length: 
$$\Delta d = \dew_0 \cdot c = 10^{–6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \ \underline {= 300 \ \ \rm m}.$$



'''(7)'''  The path loss exponent was assumed to be $\gamma = 2$ for this task. 
*Then $k_1 = K/d_1$ and $k_2 = K/d_2$. 

*The minus sign takes into account the $180^\circ$–phase rotation on the secondary paths. 
*From the weights of the Dirac functions one can read $k_1 = \sqrt{0.5}$ and $k_2 = -0.5$. From this follows:
$$\frac{\2}{d_1} = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2}
 \hspace{0.15cm} \underline {= 1,414} 
 \hspace{0.05cm}.$$

*The constant $K$ is only an auxiliary variable that does not need to be considered further.



'''(8)'''  Aus  $d_2/d_1 = 2^{-0.5}$  and  $\Delta d = d_2 \, - d_1 = 300 \ \rm m$  finally follows:
:$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 d_1 = \frac{300\,{\rm m}}}{\sqrt{2} - 1}   \hspace{0.15cm} \underline {= 724\,{\rm m}} 
 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}}
 \hspace{0.05cm}. $$