Difference between revisions of "Aufgaben:Exercise 2.7: Coherence Bandwidth"
Line 49: | Line 49: | ||
$\sigma_{\rm V} \ = \ ${ 1 3% } $\ \rm µ s$ | $\sigma_{\rm V} \ = \ ${ 1 3% } $\ \rm µ s$ | ||
− | {What equation applies to the frequency–correlation function $\varphi_{\rm F}(\ | + | {What equation applies to the frequency–correlation function $\varphi_{\rm F}(\Delta f)$? |
|type="()"} | |type="()"} | ||
+ $\varphi_{\rm F}(\Delta f) = \big[1/\tau_0 + {\rm j} \ 2 \pi \cdot \delta f \big]^{-1}$, | + $\varphi_{\rm F}(\Delta f) = \big[1/\tau_0 + {\rm j} \ 2 \pi \cdot \delta f \big]^{-1}$, |
Revision as of 17:30, 22 April 2020
For the power spectral density of the delay, we assume an exponential behavior. With ${\it \Phi}_0 = {\it \Phi}_{\rm V}(\tau = 0)$ we have
- $${{\it \phi}_{\rm V}(\tau)}/{{\it \phi}_{\rm 0}} = {\rm e}^{ -\tau / \tau_0 } \hspace{0.05cm}.$$
The constant $\tau_0$ can be determined from the tangent in the point $\tau = 0$ according to the upper graph. Note that ${\it \Phi}_{\rm V}(\tau)$ has dimension $[1/\rm s]$ . Furthermore,
- The probability density function (PDF) $f_{\rm V}(\tau)$ has the same form as ${\it \Phi}_{\rm V}(\tau)$, but is normalized to area $1$ .
- The average excess delay or mean excess delay $m_{\rm V}$ is equal to the linear expectation $E\big [\tau \big]$ and can be determined from the PDF $f_{\rm V}(\tau)$ .
- The multipath spread or delay spread $\sigma_{\rm V}$ gives the standard deviation (dispersion) of the random variable $\tau$ . In the theory part we also use the term $T_{\rm V}$ for this.
- The displayed frequency correlation function $\varphi_{\rm F}(\delta f)$ can be calculated as the Fourier transform of the power spectral density of the delay ${\it \Phi}_{\rm V}(\tau)$ :
- $$\varphi_{\rm F}(\Delta f) \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$$
- The coherence bandwidth $B_{\rm K}$ is the value of $\Delta f$ at which the frequency correlation function $\varphi_{\rm F}(\Delta f)$ has dropped to half in absolute value.
Notes:
- This task belongs to the topic of the chapter GWSSUS–Kanalmodell.
- This task requires knowledge of computation of moments of random variables from the book „Stochastic Signal Theory”.
- In addition, the following Fourier transform is given:
- $$x(t) = \left\{ \begin{array}{c} {\rm e}^{- \lambda \hspace{0.05cm}\cdot \hspace{0.05cm} t}\\ 0 \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.35cm} {\rm f\ddot{u}r} \hspace{0.15cm} t \ge 0 \\ \hspace{-0.35cm} {\rm f\ddot{u}r} \hspace{0.15cm} t < 0 \\ \end{array} \hspace{0.4cm} {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.4cm} X(f) = \frac{1}{\lambda + {\rm j} \cdot 2\pi f}\hspace{0.05cm}.$$
Questionnaire
Sample solution
- This gives for the probability density function
$$f_{\rm V}(\tau) = \frac{{{\it \phi}_{\rm V}(\tau) }{{\it \phi}_{\rm 0} \cdot \tau_0}= \frac{1}{\frac{1}{\a_dot_0} \cdot {\rm e}^{-\tau / \tau_0} \hspace{0.05cm}.$$
- Solution 2 is therefore correct.
(2) The $k$–te moment of a Exponential_Random_Size is equal to $m_k = k according to our nomenclature! \cdot \tau_0^k$.
- With $k = 1$ this results in the linear mean value $m_1 = m_{\rm V}$:
$$m_{\rm V} = \tau_0 \hspace{0.1cm} \underline {= 1\,{\rm & micro; s} \hspace{0.05cm}. $$
(3) According to the Steiner's Theorem, the following applies generally to the variance of a random variable: $\sigma^2 = m_2 \, –m_1^2$.
- According to the above equation, $m_2 = 2 \cdot \tau_0^2$. It follows:
$$\sigma_{\rm V}^2 = m_2 - m_1^2 = 2 \cdot \tau_0^2 - (\tau_0)^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sigma_{\rm V} = \tau_0 \hspace{0.1cm} \underline {= 1\,{\rm & micro; s} \hspace{0.05cm}. $$
(4) ${\it \Phi}_{\rm V}(\tau)$ is identical to $x(t)$ given in the auxiliary equation if $t$ is replaced by $\tau$ and $\lambda$ by $1/\tau_0$.
- Thus $\varphi_{\rm F}(\delta f)$ has the same course as $X(f)$ with the substitution $f → \delta f$:
$$\varphi_{\rm F}(\delta f) = \frac{1}{1/\tau_0 + {\rm j} \cdot 2\pi \delta f} = \frac{\tau_0}{1 + {\rm j} \cdot 2\pi \cdot \tau_0 \cdot \delta f}\hspace{0.05cm}.$ *"Correct is the <u>first equation. '''(5)''' The coherence bandwidth is implicit in the following equation: $$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} \frac{1}{2} \cdot |\varphi_{\rm F}(\delta f = 0)| = \frac{\tau_0}{2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(\Delta f = B_{\rm K})|^2 = \frac{\dot_0^2}{1 + (2\pi \cdot \dot_0 \cdot B_{\rm K})^2} \stackrel {!}{=} \frac{\tau_0^2}{4}'"`UNIQ-MathJax25-QINU`"'\Rightarrow \hspace{0.3cm}(2\pi \cdot \tau_0 \cdot B_{\rm K})^2 = 3 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} B_{\rm K}= \frac{\sqrt{3}}{2\pi \cdot \tau_0} \approx \frac{0.276}{ \tau_0}\hspace{0.05cm}. $
- With $\tau_0 = 1 \ \ \rm µ s$ follows for the coherence bandwidth $B_{\rm K} \ \underline {= 276 \ \ \rm kHz}$.