Difference between revisions of "Aufgaben:Exercise 5.3: PACF of PN Sequences"
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1884__Mod_A_5_3.png|right|frame|M–Sequenz | + | [[File:P_ID1884__Mod_A_5_3.png|right|frame|M–Sequenz $(P = 15)$ plus zyklische Vertauschungen]] |
Mit einem rückgekoppelten Schieberegister vom Grad $G$ lässt sich eine Spreizfolge $〈c_ν〉$ mit der (maximalen) Periodenlänge $P = 2^G - 1$ erzeugen, wenn die Rückführungskoeffizienten (Anzapfungen) richtig gewählt sind. | Mit einem rückgekoppelten Schieberegister vom Grad $G$ lässt sich eine Spreizfolge $〈c_ν〉$ mit der (maximalen) Periodenlänge $P = 2^G - 1$ erzeugen, wenn die Rückführungskoeffizienten (Anzapfungen) richtig gewählt sind. | ||
In dieser Aufgabe wird der in der linken Grafik von [[Modulationsverfahren/Spreizfolgen_für_CDMA#Pseudo.E2.80.93Noise.E2.80.93Folgen_maximaler_L.C3.A4nge|$\text{Beispiel 1}$]] im Theorieteil dargestelle PN–Generator mit der Oktalkennung $(31)$ betrachtet, der wegen $G = 4$ eine Folge mit der Periodenlänge $P = 15$ liefert. | In dieser Aufgabe wird der in der linken Grafik von [[Modulationsverfahren/Spreizfolgen_für_CDMA#Pseudo.E2.80.93Noise.E2.80.93Folgen_maximaler_L.C3.A4nge|$\text{Beispiel 1}$]] im Theorieteil dargestelle PN–Generator mit der Oktalkennung $(31)$ betrachtet, der wegen $G = 4$ eine Folge mit der Periodenlänge $P = 15$ liefert. | ||
− | In der Grafik sind die unipolare Folge $〈u_ν〉$ mit $u_ν ∈ \{0, 1\}$ und daraus abgeleitete zyklische Verschiebungen $〈u_{ν+λ}〉$ dargestellt, wobei der Verschiebungsparameter $λ$ Werte zwischen $1$ und $15$ annimmt. Eine Verschiebung um $λ$ bedeutet dabei absolut einen Versatz um $λ · T_c$. Hierbei bezeichnet $T_c$ die Chipdauer. | + | In der Grafik zu dieser Aufgabe sind die unipolare Folge $〈u_ν〉$ mit $u_ν ∈ \{0, 1\}$ und daraus abgeleitete zyklische Verschiebungen $〈u_{ν+λ}〉$ dargestellt, wobei der Verschiebungsparameter $λ$ Werte zwischen $1$ und $15$ annimmt. Eine Verschiebung um $λ$ bedeutet dabei absolut einen Versatz um $λ · T_c$. Hierbei bezeichnet $T_c$ die Chipdauer. |
− | Für den Einsatz in einem CDMA–System verwendet man allerdings die bipolare (antipodische) Folge $〈c_ν〉$ mit $c_ν ∈ \{+1, -1\}$, die ab der Teilaufgabe '''(5)''' untersucht werden soll. Gesucht ist deren periodische Autokorrelationsfunktion (PAKF) | + | Für den Einsatz in einem CDMA–System verwendet man allerdings die bipolare (antipodische) Folge $〈c_ν〉$ mit $c_ν ∈ \{+1, -1\}$, die ab der Teilaufgabe '''(5)''' untersucht werden soll. Gesucht ist deren periodische Autokorrelationsfunktion (PAKF) |
:$${\it \varphi}_{c}(\lambda) = {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ] \hspace{0.05cm}.$$ | :$${\it \varphi}_{c}(\lambda) = {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ] \hspace{0.05cm}.$$ | ||
Zur Herleitung soll zunächst die PAKF | Zur Herleitung soll zunächst die PAKF | ||
:$${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]$$ | :$${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]$$ | ||
− | mit den unipolaren Koeffizienten $u_ν ∈ \{0, 1\}$ berechnet werden. Die Umrechnung der Koeffizienten ist durch $c_ν = 1 | + | mit den unipolaren Koeffizienten $u_ν ∈ \{0, 1\}$ berechnet werden. Die Umrechnung der Koeffizienten ist durch $c_ν = 1 - 2u_ν$ gegeben. |
+ | |||
+ | |||
Line 32: | Line 34: | ||
$G \ = \ $ { 4 } | $G \ = \ $ { 4 } | ||
− | {Wie groß ist der quadratische Erwartungswert der Koeffizienten $u_ν ∈ \{0, 1\}$? | + | {Wie groß ist der quadratische Erwartungswert der Koeffizienten $u_ν ∈ \{0,\ 1\}$? |
|type="{}"} | |type="{}"} | ||
${\rm E}\big[u_ν^{\hspace{0.04cm}2}\big] \ = \ $ { 0.533 3% } | ${\rm E}\big[u_ν^{\hspace{0.04cm}2}\big] \ = \ $ { 0.533 3% } |
Revision as of 16:05, 30 April 2020
Mit einem rückgekoppelten Schieberegister vom Grad $G$ lässt sich eine Spreizfolge $〈c_ν〉$ mit der (maximalen) Periodenlänge $P = 2^G - 1$ erzeugen, wenn die Rückführungskoeffizienten (Anzapfungen) richtig gewählt sind.
In dieser Aufgabe wird der in der linken Grafik von $\text{Beispiel 1}$ im Theorieteil dargestelle PN–Generator mit der Oktalkennung $(31)$ betrachtet, der wegen $G = 4$ eine Folge mit der Periodenlänge $P = 15$ liefert.
In der Grafik zu dieser Aufgabe sind die unipolare Folge $〈u_ν〉$ mit $u_ν ∈ \{0, 1\}$ und daraus abgeleitete zyklische Verschiebungen $〈u_{ν+λ}〉$ dargestellt, wobei der Verschiebungsparameter $λ$ Werte zwischen $1$ und $15$ annimmt. Eine Verschiebung um $λ$ bedeutet dabei absolut einen Versatz um $λ · T_c$. Hierbei bezeichnet $T_c$ die Chipdauer.
Für den Einsatz in einem CDMA–System verwendet man allerdings die bipolare (antipodische) Folge $〈c_ν〉$ mit $c_ν ∈ \{+1, -1\}$, die ab der Teilaufgabe (5) untersucht werden soll. Gesucht ist deren periodische Autokorrelationsfunktion (PAKF)
- $${\it \varphi}_{c}(\lambda) = {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ] \hspace{0.05cm}.$$
Zur Herleitung soll zunächst die PAKF
- $${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]$$
mit den unipolaren Koeffizienten $u_ν ∈ \{0, 1\}$ berechnet werden. Die Umrechnung der Koeffizienten ist durch $c_ν = 1 - 2u_ν$ gegeben.
Hinweis:
- Die Aufgabe gehört zum Kapitel Spreizfolgen für CDMA.
Fragebogen
Musterlösung
(2) Von den $P = 15$ Spreizbits sind $8$ Einsen und $7$ Nullen. Damit gilt wegen $u_ν^{\hspace{0.04cm}2} = u_ν$:
- $${\rm E}\big [ u_\nu \big ] = {\rm E}\big [ u_\nu^2 \big ] = {8}/{15} \hspace{0.15cm}\underline {\approx 0.533} \hspace{0.05cm}, \hspace{0.3cm} \text{allgemein:}\,\, (P+1)/(2P)\hspace{0.05cm}.$$
(3) In bipolarer Darstellung ist stets $c_ν^{\hspace{0.04cm}2} = 1$. Damit gilt auch für den quadratischen Erwartungswert:
- $${\rm E}\big [ c_\nu^{\hspace{0.04cm}2} \big ] \hspace{0.15cm}\underline {= 1}\hspace{0.05cm}.$$
(4) Richtig sind die Lösungsvorschläge 1, 2 und 4:
- Die beigefügte Tabelle macht deutlich, dass für die diskreten PAKF–Werte mit $λ = 1$, ... , $14$ gilt:
- $${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]= {4}/{15} \hspace{0.05cm}.$$
- Multipliziert man nämlich 〈$u_ν$〉 mit 〈$u_{ν+λ}$〉, wobei für den Index λ wieder die Werte $1$, ... , $14$ einzusetzen sind, so treten im Produkt jeweils vier Einsen auf.
- Dagegen gilt für $λ = P = 15$:
- $${\it \varphi}_{u}(\lambda = 15) = {\rm E}\big [ u_\nu \cdot u_{\nu+P} \big ]= {8}/{15} \hspace{0.05cm}.$$
(5) Die bipolaren Koeffizienten $c_ν$ ergeben sich aus den unipolaren Koeffizienten $u_ν$ gemäß der Gleichung
- $$c_\nu = 1 - 2 \cdot u_\nu \hspace{0.3cm} \Rightarrow \hspace{0.3cm} u_\nu = 0\text{:} \ \ c_\nu = +1\hspace{0.05cm},\hspace{0.3cm}u_\nu = 1\text{:} \ \ c_\nu = -1 \hspace{0.05cm}.$$
- Damit folgt aus den Rechenregeln für Erwartungswerte:
- $${\it \varphi}_{c}(\lambda) = {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ]= {\rm E} \big [ (1 - 2 \cdot u_\nu ) \cdot (1 - 2 \cdot u_{\nu+\lambda} ) \big ] = 1 + 4 \cdot {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ] - 2 \cdot {\rm E}\big [ u_\nu \big ] - 2 \cdot {\rm E}\big [ u_{\nu+\lambda} \big ] \hspace{0.05cm}.$$
- Mit dem Ergebnis der Teilaufgabe (2)
- $$ {\rm E}\left [ u_{\nu} \right ]= {\rm E}\left [ u_{\nu+\lambda} \right ]={8}/{15} \hspace{0.05cm},$$
und der Teilaufgabe (4)
- $${\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ] ={4}/{15} \hspace{0.05cm} \,\,{\rm{f\ddot{u}r}}\,\,\lambda = 0, \pm P, \pm 2P, \text{...}$$
kommt man somit zum Ergebnis (falls $λ$ kein Vielfaches von $P$):
- $${\it \varphi}_{c}(\lambda) = 1 + 4 \cdot \frac{4}{15} - 2 \cdot \frac{8}{15}- 2 \cdot \frac{8}{15} = - \frac{1}{15} = - \frac{1}{P}\hspace{0.15cm}\underline {\approx - 0.067} \hspace{0.05cm}.$$
(6) Eine M–Sequenz mit Grad $G = 6$ hat die Periodenlänge $P = 63$. Entsprechend dem Ergebnis zur Teilaufgabe (5) erhält man somit:
- $$ {\it \varphi}_{c}(\lambda = 0) \hspace{0.15cm}\underline {= +1} \hspace{0.05cm},$$
- $$ {\it \varphi}_{c}(\lambda = 1)= - 1/63 \hspace{0.15cm}\underline {\approx - 0.016} \hspace{0.05cm},$$
- $$ {\it \varphi}_{c}(\lambda = 63) = {\it \varphi}_{c}(\lambda = 0) \hspace{0.15cm}\underline {= +1} \hspace{0.05cm},$$
- $$ {\it \varphi}_{c}(\lambda = 64) = {\it \varphi}_{c}(\lambda = 1)= - 1/63 \hspace{0.15cm}\underline {\approx - 0.016} \hspace{0.05cm}.$$