Difference between revisions of "Aufgaben:Exercise 2.1: Rectification"
Line 39: | Line 39: | ||
</quiz> | </quiz> | ||
− | ===Musterlösung | + | ===Musterlösung=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''1.''' Die nichtlineare Kennlinie $y = g(x)$ beschreibt einen Einweggleichrichter und $z = h(x) = |x|$ einen Zweiweggleichrichter ⇒ Richtig sind die Lösungsvorschläge 1 und 4. | '''1.''' Die nichtlineare Kennlinie $y = g(x)$ beschreibt einen Einweggleichrichter und $z = h(x) = |x|$ einen Zweiweggleichrichter ⇒ Richtig sind die Lösungsvorschläge 1 und 4. |
Revision as of 21:45, 10 April 2016
Die Grafik zeigt das periodische Signal $x(t)$. Legt man $x(t)$ an den Eingang einer Nichtlinearität mit der Kennlinie
$$y=g(x)=\left\{ {x \; \rm f\ddot{u}r\; \it x \geq \rm 0, \atop {\rm 0 \;\;\; \rm sonst,}}\right.$$
so erhält man am Ausgang das Signal $y(t)$. Eine zweite nichtlineare Kennlinie
$$z=h(x)=|x|$$
liefert das Signal $z(t)$.
Fragebogen
Musterlösung
2. Die Periodendauer des gegebenen Signals $x(t)$ beträgt $T_0 = 2$ ms. Der Kehrwert hiervon ergibt die Grundfrequenz $f_0 = 500$ Hz.
3. Wie aus der folgenden linken Skizze hervorgeht, ändert sich durch die Einweggleichrichtung nichts an der Periodendauer. Das heißt: $T_0$ ist weiterhin 2 ms.
4. Das Signal z(t) nach der Doppelweggleichrichtung hat dagegen die doppelte Frequenz (siehe rechtes Bild). Es gelten dann folgende Werte: $T_0 = 1$ ms, $f_0 = 1$ kHz und $\omega_0 = 6283$ 1/s.