Difference between revisions of "Aufgaben:Exercise 3.2: GSM Data Rates"

From LNTwww
Line 6: Line 6:
 
In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration  $T_{\rm R} = 20 \ \rm ms$  of a voice frame as a temporal reference in the following calculations. The input data rate is  $R_{1} = 9.6 \ \rm kbit/s$. The number of input bits in each $T_{\rm R}$ frame is  $N_{1}$. All parameters labelled "???" in the graphic should be calculated in the task.
 
In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration  $T_{\rm R} = 20 \ \rm ms$  of a voice frame as a temporal reference in the following calculations. The input data rate is  $R_{1} = 9.6 \ \rm kbit/s$. The number of input bits in each $T_{\rm R}$ frame is  $N_{1}$. All parameters labelled "???" in the graphic should be calculated in the task.
  
 
+
The first blocks are shown in the transmission chain shown:
 
+
*the outer coder (block code including four tail bits) with  $N_{2} = 244 \ \rm Bit$  per frame  $(T_{\rm R} = 20 \ \ \rm ms)$   ⇒   Rate  $R_{2}$  is to be determined,
The first blocks you will see in the transmission chain shown:
 
*the outer coder (block code including four tail bits) with  $N_{2} = 244 \ \rm Bit$  per frame  $(T_{\rm R} = 20 \ \ \ \rm ms)$   ⇒   Rate  $R_{2}$  is to be determined,
 
 
*the convolutional coder with the code rate  $1/2$, and subsequent puncturing $($waiver of  $N_{\rm P} \ \rm bit)$    ⇒   Rate $R_{3} = 22.8 \ \rm kbit/s$,
 
*the convolutional coder with the code rate  $1/2$, and subsequent puncturing $($waiver of  $N_{\rm P} \ \rm bit)$    ⇒   Rate $R_{3} = 22.8 \ \rm kbit/s$,
 
*Interleaving and encryption, both rate-neutral At the output of this block the rate  $R_4$  occurs.
 
*Interleaving and encryption, both rate-neutral At the output of this block the rate  $R_4$  occurs.
 
 
  
  
Line 22: Line 18:
  
  
The total gross data rate  $R_{\rm ges} = 270,833 \ \rm kbit/s$  (for eight users) is assumed to be known.
+
The total gross digital data rate  $R_{\rm ges} = 270,833 \ \rm kbit/s$  (for eight users) is assumed to be known.
  
  
Line 37: Line 33:
 
*$N_{1},  N_{2},  N_{3}$  and  $N_{4}$  denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration  $T_{\rm R} = 20 \ \rm ms$.
 
*$N_{1},  N_{2},  N_{3}$  and  $N_{4}$  denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration  $T_{\rm R} = 20 \ \rm ms$.
 
*$N_{\rm ges} = 156.25$  is the number of bits after burst formation, related to the duration  $T_{\rm Z}$  of a TDMA time slot. Of which  $N_{\rm Info} = 114$  are information bits including channel coding.
 
*$N_{\rm ges} = 156.25$  is the number of bits after burst formation, related to the duration  $T_{\rm Z}$  of a TDMA time slot. Of which  $N_{\rm Info} = 114$  are information bits including channel coding.
 
 
 
  
  
Line 67: Line 60:
  
  
{What is the data rate after interleaving and encryption?
+
{What is the data rate after Interleaver and encryption?
 
|type="{}"}
 
|type="{}"}
 
$R_{4} \ = \ $ { 22.8 3% } $\ \ \rm kbit/s$
 
$R_{4} \ = \ $ { 22.8 3% } $\ \ \rm kbit/s$
Line 81: Line 74:
 
$R_{6} \ = \ $ { 33,854 3% } $\ \ \rm kbit/s$
 
$R_{6} \ = \ $ { 33,854 3% } $\ \ \rm kbit/s$
  
{What gross data rate would result without signaling bits?
+
{What gross data rate would be without signaling bits?
 
|type="{}"}
 
|type="{}"}
 
$R_{5} \ = \ $ { 31.25 3% } $\ \ \rm kbit/s$
 
$R_{5} \ = \ $ { 31.25 3% } $\ \ \rm kbit/s$
Line 88: Line 81:
  
 
=== sample solution===
 
=== sample solution===
{{{ML Kopf}
+
{{ML-Kopf}}
  
'''(1)'''  The following applies $N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{\ 192 \rm bit}$.
+
'''(1)'''  Es gilt $N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{= 192 \ \rm Bit}$.
  
  
'''(2)'''  Analogous to the subtask '''(1)'' applies:
+
'''(2)'''  Analog zur Teilaufgabe '''(1)''' gilt:
$$R_2= \frac{N_2}{T_{\rm R}}} = \frac{244\,{\rm bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.$$
+
:$$R_2= \frac{N_2}{T_{\rm R}} = \frac{244\,{\rm Bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.$$
Please note:   For a redundancy-free binary source (but only this one), there is no difference between "$\rm bit$" and "$\rm bit$".
+
Beachten Sie bitte:   Bei einer redundanzfreien Binärquelle (aber nur bei dieser) besteht kein Unterschied zwischen „$\rm Bit$” und „$\rm bit$.
  
  
'''(3)'''  The convolutional encoder of rate $1/2$ alone would generate exactly $N_{3}\hspace{0.01cm}' from its $N_{2} = 244$ input bits. \hspace{0.15cm}\underline{= 488}$ generate output bits per frame.
+
'''(3)'''  Der Faltungscoder der Rate $1/2$ allein würde aus seinen $N_{2} = 244$ Eingangsbits genau $N_{3}\hspace{0.01cm}' \hspace{0.15cm}\underline{= 488}$ Ausgangsbits pro Rahmen generieren.
  
  
'''(4)'''  Contrary, $N_{3} follows from the specified data rate $R_{3} = 22.8 \ \rm kbit/s$ \hspace\underline $456.  
+
'''(4)'''  Aus der angegebenen Datenrate $R_{3} = 22.8 \ \rm kbit/s$ folgt dagegen $N_{3} \hspace{0.15cm}\underline{= 456}$.  
*This means that from $N_{3}' = 488 \ \ \rm Bit$ are removed by the dotting $N_{\rm P} = 32 \ \ \rm Bit$.
+
*Das bedeutet, dass von den $N_{3}' = 488 \ \rm Bit$ durch die Punktierung $N_{\rm P} = 32 \ \rm Bit$ entfernt werden.
  
  
'''(5)'''  Both the interleaving and the encryption are "data neutral" so to speak. Thus the following applies:  
+
'''(5)'''  Sowohl das Interleaving als auch die Verschlüsselung erfolgt sozusagen „datenneutral”. Damit gilt:  
:$$R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}}  
+
:$$R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}} \Rightarrow  N_{4} = N_{3} = 456.$$
  
  
'''(6)'''  The bit duration is $T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \ \rm Mbit/s}) \approx 3.69 \ \rm µ s$.  
+
'''(6)'''  Für die Bitdauer gilt $T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \rm Mbit/s}) \approx 3.69 \ \rm µ s$.  
*A burst - consisting of $156.25 \ \ \rm Bit$ - is transmitted in each time slot of duration $T_{\rm Z}$.  
+
*In jedem Zeitschlitz der Dauer $T_{\rm Z}$ wird ein Burst – bestehend aus $156.25 \ \rm Bit$ – übertragen.  
*This results in $T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm µ s}$.
+
*Daraus ergibt sich $T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm µ s}$.
  
  
'''(7)'''  GSM has eight time slots, with one time slot being periodically assigned to each user.  
+
'''(7)'''  Bei GSM gibt es acht Zeitschlitze, wobei jedem Nutzer periodisch ein Zeitschlitz zugewiesen wird.  
*The gross data rate for each user is $R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}$.
+
*Damit beträgt die Bruttodatenrate für jeden Nutzer $R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}$.
  
  
'''(8)'''  Considering that for the ''Normal Burst'' the amount of user data (including channel coding) is $114/156.25$, the rate would be without consideration of the added signaling bits:
+
'''(8)'''  Berücksichtigt man, dass beim ''Normal Burst'' der Anteil der Nutzdaten (inkl. Kanalcodierung) $114/156.25$ beträgt, so wäre die Rate ohne Berücksichtigung der zugefügten Signalisierungsbits:
:$$R_5 = \frac{n_{\rm ges} }{\rm Info} \cdot R_4 = \frac{156.25}{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31,250\,{\rm kbit/s}}\hspace{0.05cm}.$$
+
:$$R_5 = \frac{n_{\rm ges} }{n_{\rm Info} } \cdot R_4 = \frac{156.25 }{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$
*The same result can be obtained if you consider that in GSM every 13th frame is reserved for ''Common Control'' (signalling info):
+
*Zum gleichen Ergebnis kommt man, wenn man berücksichtigt, dass bei GSM jeder 13. Rahmen für ''Common Control'' (Signalisierungs–Info) reserviert ist:
:$$R_5 = \frac{12}{13} \cdot 33,854\,{\rm kbit/s} ={ 31,250\,{\rm kbit/s}}\hspace{0.05cm}.$$
+
:$$R_5 = \frac{12 }{13 } \cdot 33.854\,{\rm kbit/s} ={ 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$
*Consequently , the percentage of signaling bits is:
+
*Damit beträgt der prozentuale Anteil der Signalisierungsbits:
$$\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854} { \approx 7.7\%}\hspace{0.05cm}.$$
+
:$$\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854 } { \approx 7.7\%}\hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 129: Line 122:
  
  
Category:Exercises for Mobile Communications|^3.2 Similarities between GSM and UMTS
+
[[Category:Exercises for Mobile Communications|^3.2 Similarities between GSM and UMTS
 
^]]
 
^]]

Revision as of 13:10, 25 June 2020

Block diagram of GSM

In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration  $T_{\rm R} = 20 \ \rm ms$  of a voice frame as a temporal reference in the following calculations. The input data rate is  $R_{1} = 9.6 \ \rm kbit/s$. The number of input bits in each $T_{\rm R}$ frame is  $N_{1}$. All parameters labelled "???" in the graphic should be calculated in the task.

The first blocks are shown in the transmission chain shown:

  • the outer coder (block code including four tail bits) with  $N_{2} = 244 \ \rm Bit$  per frame  $(T_{\rm R} = 20 \ \ \rm ms)$   ⇒   Rate  $R_{2}$  is to be determined,
  • the convolutional coder with the code rate  $1/2$, and subsequent puncturing $($waiver of  $N_{\rm P} \ \rm bit)$    ⇒   Rate $R_{3} = 22.8 \ \rm kbit/s$,
  • Interleaving and encryption, both rate-neutral At the output of this block the rate  $R_4$  occurs.


The further signal processing is basically as follows:

  • Each  $114$  (coded, scrambled, encrypted) data bits are combined together with  $34$  control bits (for training sequence, tail bits, guard period) and a pause $($Duration:   $8.25 \ \ \rm Bit)$  to a so called  Normal \ Burst . The rate at the output is called  $R_{5}$ .
  • Additionally, further bursts (Frequency Correction Burst, Synchronisation Burst, Dummy Burst, Access Bursts) are added for signalling. The rate after this block is  $R_{6}$.
  • Finally the TDMA multiplexing equipment follows, so that the total gross data rate of the GSM is  $R_{\rm ges} = R_{7}$ .


The total gross digital data rate  $R_{\rm ges} = 270,833 \ \rm kbit/s$  (for eight users) is assumed to be known.




Notes:

  • The task belongs to the chapter  Gemeinsamkeiten von GSM und UMTS.
  • The graphic above summarizes the present description and defines the data rates used.
  • All rates are given in "$ \rm kbit/s$".
  • $N_{1},  N_{2},  N_{3}$  and  $N_{4}$  denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration  $T_{\rm R} = 20 \ \rm ms$.
  • $N_{\rm ges} = 156.25$  is the number of bits after burst formation, related to the duration  $T_{\rm Z}$  of a TDMA time slot. Of which  $N_{\rm Info} = 114$  are information bits including channel coding.


Questionnaire

1

How many bits are provided by the source in each frame?

$N_{1} \ = \ $

$\ \ \rm Bit$

2

What is the data rate after the outer coder?

$R_{2} \ = \ $

$\ \ \rm kbit/s$

3

How many bits would the convolutional coder deliver alone (without dotting)?

$N_{3}\hspace{0.01cm}' \ = \ $

$\ \ \rm Bit$

4

How many bits does the dotted convolutional coder actually emit?

$N_{3} \ = \ $

$\ \ \rm Bit$

5

What is the data rate after Interleaver and encryption?

$R_{4} \ = \ $

$\ \ \rm kbit/s$

6

How long does a time slot last?

$T_{\rm Z} \ = \ $

$\ \ \rm µ s$

7

What is the gross data rate for each individual TDMA user?

$R_{6} \ = \ $

$\ \ \rm kbit/s$

8

What gross data rate would be without signaling bits?

$R_{5} \ = \ $

$\ \ \rm kbit/s$


sample solution

(1)  Es gilt $N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{= 192 \ \rm Bit}$.


(2)  Analog zur Teilaufgabe (1) gilt:

$$R_2= \frac{N_2}{T_{\rm R}} = \frac{244\,{\rm Bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.$$

Beachten Sie bitte:   Bei einer redundanzfreien Binärquelle (aber nur bei dieser) besteht kein Unterschied zwischen „$\rm Bit$” und „$\rm bit$”.


(3)  Der Faltungscoder der Rate $1/2$ allein würde aus seinen $N_{2} = 244$ Eingangsbits genau $N_{3}\hspace{0.01cm}' \hspace{0.15cm}\underline{= 488}$ Ausgangsbits pro Rahmen generieren.


(4)  Aus der angegebenen Datenrate $R_{3} = 22.8 \ \rm kbit/s$ folgt dagegen $N_{3} \hspace{0.15cm}\underline{= 456}$.

  • Das bedeutet, dass von den $N_{3}' = 488 \ \rm Bit$ durch die Punktierung $N_{\rm P} = 32 \ \rm Bit$ entfernt werden.


(5)  Sowohl das Interleaving als auch die Verschlüsselung erfolgt sozusagen „datenneutral”. Damit gilt:

$$R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}} \Rightarrow N_{4} = N_{3} = 456.$$


(6)  Für die Bitdauer gilt $T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \rm Mbit/s}) \approx 3.69 \ \rm µ s$.

  • In jedem Zeitschlitz der Dauer $T_{\rm Z}$ wird ein Burst – bestehend aus $156.25 \ \rm Bit$ – übertragen.
  • Daraus ergibt sich $T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm µ s}$.


(7)  Bei GSM gibt es acht Zeitschlitze, wobei jedem Nutzer periodisch ein Zeitschlitz zugewiesen wird.

  • Damit beträgt die Bruttodatenrate für jeden Nutzer $R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}$.


(8)  Berücksichtigt man, dass beim Normal Burst der Anteil der Nutzdaten (inkl. Kanalcodierung) $114/156.25$ beträgt, so wäre die Rate ohne Berücksichtigung der zugefügten Signalisierungsbits:

$$R_5 = \frac{n_{\rm ges} }{n_{\rm Info} } \cdot R_4 = \frac{156.25 }{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$
  • Zum gleichen Ergebnis kommt man, wenn man berücksichtigt, dass bei GSM jeder 13. Rahmen für Common Control (Signalisierungs–Info) reserviert ist:
$$R_5 = \frac{12 }{13 } \cdot 33.854\,{\rm kbit/s} ={ 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$
  • Damit beträgt der prozentuale Anteil der Signalisierungsbits:
$$\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854 } { \approx 7.7\%}\hspace{0.05cm}.$$