Difference between revisions of "Aufgaben:Exercise 1.4Z: Sum of Ternary Quantities"
From LNTwww
m (Text replacement - "[[Stochastische_Signaltheorie/" to "[[Theory_of_Stochastic_Signals/") |
|||
Line 22: | Line 22: | ||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[ | + | *Die Aufgabe gehört zum Kapitel [[Theory_of_Stochastic_Signals/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]]. |
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo | *Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo |
Revision as of 10:51, 9 July 2020
Gegeben seien die ternären Zufallsgrößen
- $$x ∈ {–2, \ 0, +2},$$
- $$y ∈ {–1, \ 0, +1}.$$
Diese beiden Ternärwerte treten jeweils mit gleicher Wahrscheinlichkeit auf. Daraus wird als eine neue Zufallsgröße die Summe $s = x + y$ gebildet.
Das nebenstehendes Schema zeigt, dass die Summe $s$ alle ganzzahligen Werte zwischen $–3$ und $+3$ annehmen kann:
- $$ s \in \{-3, -2, -1, \ 0, +1, +2, +3\}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Statistische Abhängigkeit und Unabhängigkeit.
- Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo
Fragebogen
Musterlösung
In nebenstehender Grafik sind
- die drei zum Ereignis $x > 0$ gehörenden Felder violett umrandet,
- die Felder für $s > 0$ gelb hinterlegt.
Alle gesuchten Wahrscheinlichkeiten können hier mit Hilfe der klassischen Definition ermittelt werden.
(1) Dieses Ereignis ist durch die gelb hinterlegten Felder gekennzeichnet:
- $$\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.$$
(2) Hier gilt folgender Sachverhalt:
- $$\rm Pr \big[(\it x > \rm 0) \cap (\it s>\rm 0) \big ] = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}. $$
(3) Mit den Ergebnissen der Teilaufgaben (1) und (2) folgt:
- $$\rm Pr \big[(\it x > \rm 0) \hspace{0.05cm}| \hspace{0.05cm} (\it s > \rm 0)\big] = \frac{{\rm Pr} [(\it x > \rm 0) \cap (\it s > \rm 0)]}{{\rm Pr}(\it s > \rm 0)}= \frac{3/9}{4/9}\hspace{0.15cm}\underline {= 0.75}.$$
(4) Analog zur Teilaufgabe (3) gilt nun:
- $$\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr \big[(\it x > \rm 0) \cap (\it s > \rm 0) \big]}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.$$